A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection
Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dend...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2018-12, Vol.49 (6), p.3603-3615 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3615 |
---|---|
container_issue | 6 |
container_start_page | 3603 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 49 |
creator | Zhang, Ang Du, Jinglian Guo, Zhipeng Wang, Qigui Xiong, Shoumei |
description | Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dendritic fragmentation, splitting, and formation of solute plumes were simulated. Results showed that the dendritic growth patterns under convection exhibited remarkable difference from those without convection. The presence of flow led to variation of solute diffusion and upstream–downstream dendritic growth difference, which further influenced the development of dendritic arms and multi-dendritic competitive growth. When the convection intensity was magnified, the convection-induced anisotropy became dominated, and the growth patterns changed accordingly to accommodate the local thermodynamic variation. |
doi_str_mv | 10.1007/s11663-018-1418-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22931894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112430215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-14d7418cbc4a0d59736586bc2d1dfb9844b5bb9bc8c5256ec2a67411027bbb953</originalsourceid><addsrcrecordid>eNp1UMFKxDAUDKLguvoB3gKeo3lpk7bHtbqrsKCge_AU2jR1u3QTTbLK-vWmVNiTl3mP92aGYRC6BHoNlGY3HkCIhFDICaQDHKEJ8DQhUIA4jjvNEsIF8FN05v2GUiqKIpmgtxl-Xldek3mn-wYvqxA6pcmt7cPPtjIGv4Rds8fW4DttGtfFL144-x3W2LZ41pNyF7G3e7wyjXa4tOZLq9BZc45O2qr3-uJvTtFqfv9aPpDl0-KxnC2JSoGGmLbJYmBVq7SiDS-yRPBc1Io10LR1kadpzeu6qFWuOONCK1aJKADKsjreeTJFV6Ov9aGTXnVBq7WyxsQYkrEigbxID6wPZz932ge5sTtnYjDJAFiaUAaDF4ws5az3Trfyw3Xbyu0lUDn0LMeeZexZDj1LiBo2anzkmnftDs7_i34BAax98w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112430215</pqid></control><display><type>article</type><title>A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Ang ; Du, Jinglian ; Guo, Zhipeng ; Wang, Qigui ; Xiong, Shoumei</creator><creatorcontrib>Zhang, Ang ; Du, Jinglian ; Guo, Zhipeng ; Wang, Qigui ; Xiong, Shoumei</creatorcontrib><description>Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dendritic fragmentation, splitting, and formation of solute plumes were simulated. Results showed that the dendritic growth patterns under convection exhibited remarkable difference from those without convection. The presence of flow led to variation of solute diffusion and upstream–downstream dendritic growth difference, which further influenced the development of dendritic arms and multi-dendritic competitive growth. When the convection intensity was magnified, the convection-induced anisotropy became dominated, and the growth patterns changed accordingly to accommodate the local thermodynamic variation.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-018-1418-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; ALGORITHMS ; ALUMINIUM ALLOYS ; Aluminum base alloys ; ANISOTROPY ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; Convection ; Copper ; COPPER ALLOYS ; DENDRITES ; Dendritic structure ; DIFFUSION ; EQUATIONS ; Finite element method ; FORCED CONVECTION ; FRAGMENTATION ; Grid refinement (mathematics) ; MATERIALS SCIENCE ; Metallic Materials ; Nanotechnology ; NATURAL CONVECTION ; Nonlinear equations ; NONLINEAR PROBLEMS ; PLUMES ; SIMULATION ; SOLUTES ; Structural Materials ; Surfaces and Interfaces ; THERMODYNAMICS ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2018-12, Vol.49 (6), p.3603-3615</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2018</rights><rights>Metallurgical and Materials Transactions B is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-14d7418cbc4a0d59736586bc2d1dfb9844b5bb9bc8c5256ec2a67411027bbb953</citedby><cites>FETCH-LOGICAL-c410t-14d7418cbc4a0d59736586bc2d1dfb9844b5bb9bc8c5256ec2a67411027bbb953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-018-1418-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-018-1418-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22931894$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ang</creatorcontrib><creatorcontrib>Du, Jinglian</creatorcontrib><creatorcontrib>Guo, Zhipeng</creatorcontrib><creatorcontrib>Wang, Qigui</creatorcontrib><creatorcontrib>Xiong, Shoumei</creatorcontrib><title>A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dendritic fragmentation, splitting, and formation of solute plumes were simulated. Results showed that the dendritic growth patterns under convection exhibited remarkable difference from those without convection. The presence of flow led to variation of solute diffusion and upstream–downstream dendritic growth difference, which further influenced the development of dendritic arms and multi-dendritic competitive growth. When the convection intensity was magnified, the convection-induced anisotropy became dominated, and the growth patterns changed accordingly to accommodate the local thermodynamic variation.</description><subject>Adaptive algorithms</subject><subject>ALGORITHMS</subject><subject>ALUMINIUM ALLOYS</subject><subject>Aluminum base alloys</subject><subject>ANISOTROPY</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Copper</subject><subject>COPPER ALLOYS</subject><subject>DENDRITES</subject><subject>Dendritic structure</subject><subject>DIFFUSION</subject><subject>EQUATIONS</subject><subject>Finite element method</subject><subject>FORCED CONVECTION</subject><subject>FRAGMENTATION</subject><subject>Grid refinement (mathematics)</subject><subject>MATERIALS SCIENCE</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>NATURAL CONVECTION</subject><subject>Nonlinear equations</subject><subject>NONLINEAR PROBLEMS</subject><subject>PLUMES</subject><subject>SIMULATION</subject><subject>SOLUTES</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>THERMODYNAMICS</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMFKxDAUDKLguvoB3gKeo3lpk7bHtbqrsKCge_AU2jR1u3QTTbLK-vWmVNiTl3mP92aGYRC6BHoNlGY3HkCIhFDICaQDHKEJ8DQhUIA4jjvNEsIF8FN05v2GUiqKIpmgtxl-Xldek3mn-wYvqxA6pcmt7cPPtjIGv4Rds8fW4DttGtfFL144-x3W2LZ41pNyF7G3e7wyjXa4tOZLq9BZc45O2qr3-uJvTtFqfv9aPpDl0-KxnC2JSoGGmLbJYmBVq7SiDS-yRPBc1Io10LR1kadpzeu6qFWuOONCK1aJKADKsjreeTJFV6Ov9aGTXnVBq7WyxsQYkrEigbxID6wPZz932ge5sTtnYjDJAFiaUAaDF4ws5az3Trfyw3Xbyu0lUDn0LMeeZexZDj1LiBo2anzkmnftDs7_i34BAax98w</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Zhang, Ang</creator><creator>Du, Jinglian</creator><creator>Guo, Zhipeng</creator><creator>Wang, Qigui</creator><creator>Xiong, Shoumei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20181201</creationdate><title>A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection</title><author>Zhang, Ang ; Du, Jinglian ; Guo, Zhipeng ; Wang, Qigui ; Xiong, Shoumei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-14d7418cbc4a0d59736586bc2d1dfb9844b5bb9bc8c5256ec2a67411027bbb953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>ALGORITHMS</topic><topic>ALUMINIUM ALLOYS</topic><topic>Aluminum base alloys</topic><topic>ANISOTROPY</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Copper</topic><topic>COPPER ALLOYS</topic><topic>DENDRITES</topic><topic>Dendritic structure</topic><topic>DIFFUSION</topic><topic>EQUATIONS</topic><topic>Finite element method</topic><topic>FORCED CONVECTION</topic><topic>FRAGMENTATION</topic><topic>Grid refinement (mathematics)</topic><topic>MATERIALS SCIENCE</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>NATURAL CONVECTION</topic><topic>Nonlinear equations</topic><topic>NONLINEAR PROBLEMS</topic><topic>PLUMES</topic><topic>SIMULATION</topic><topic>SOLUTES</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>THERMODYNAMICS</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ang</creatorcontrib><creatorcontrib>Du, Jinglian</creatorcontrib><creatorcontrib>Guo, Zhipeng</creatorcontrib><creatorcontrib>Wang, Qigui</creatorcontrib><creatorcontrib>Xiong, Shoumei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ang</au><au>Du, Jinglian</au><au>Guo, Zhipeng</au><au>Wang, Qigui</au><au>Xiong, Shoumei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>49</volume><issue>6</issue><spage>3603</spage><epage>3615</epage><pages>3603-3615</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dendritic fragmentation, splitting, and formation of solute plumes were simulated. Results showed that the dendritic growth patterns under convection exhibited remarkable difference from those without convection. The presence of flow led to variation of solute diffusion and upstream–downstream dendritic growth difference, which further influenced the development of dendritic arms and multi-dendritic competitive growth. When the convection intensity was magnified, the convection-induced anisotropy became dominated, and the growth patterns changed accordingly to accommodate the local thermodynamic variation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-018-1418-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2018-12, Vol.49 (6), p.3603-3615 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_osti_scitechconnect_22931894 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive algorithms ALGORITHMS ALUMINIUM ALLOYS Aluminum base alloys ANISOTROPY Characterization and Evaluation of Materials Chemistry and Materials Science Computer simulation Convection Copper COPPER ALLOYS DENDRITES Dendritic structure DIFFUSION EQUATIONS Finite element method FORCED CONVECTION FRAGMENTATION Grid refinement (mathematics) MATERIALS SCIENCE Metallic Materials Nanotechnology NATURAL CONVECTION Nonlinear equations NONLINEAR PROBLEMS PLUMES SIMULATION SOLUTES Structural Materials Surfaces and Interfaces THERMODYNAMICS Thin Films |
title | A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Phase-Field%20Lattice-Boltzmann%20Study%20on%20Dendritic%20Growth%20of%20Al-Cu%20Alloy%20Under%20Convection&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Zhang,%20Ang&rft.date=2018-12-01&rft.volume=49&rft.issue=6&rft.spage=3603&rft.epage=3615&rft.pages=3603-3615&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-018-1418-1&rft_dat=%3Cproquest_osti_%3E2112430215%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112430215&rft_id=info:pmid/&rfr_iscdi=true |