A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection

Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2018-12, Vol.49 (6), p.3603-3615
Hauptverfasser: Zhang, Ang, Du, Jinglian, Guo, Zhipeng, Wang, Qigui, Xiong, Shoumei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3615
container_issue 6
container_start_page 3603
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 49
creator Zhang, Ang
Du, Jinglian
Guo, Zhipeng
Wang, Qigui
Xiong, Shoumei
description Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dendritic fragmentation, splitting, and formation of solute plumes were simulated. Results showed that the dendritic growth patterns under convection exhibited remarkable difference from those without convection. The presence of flow led to variation of solute diffusion and upstream–downstream dendritic growth difference, which further influenced the development of dendritic arms and multi-dendritic competitive growth. When the convection intensity was magnified, the convection-induced anisotropy became dominated, and the growth patterns changed accordingly to accommodate the local thermodynamic variation.
doi_str_mv 10.1007/s11663-018-1418-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22931894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112430215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-14d7418cbc4a0d59736586bc2d1dfb9844b5bb9bc8c5256ec2a67411027bbb953</originalsourceid><addsrcrecordid>eNp1UMFKxDAUDKLguvoB3gKeo3lpk7bHtbqrsKCge_AU2jR1u3QTTbLK-vWmVNiTl3mP92aGYRC6BHoNlGY3HkCIhFDICaQDHKEJ8DQhUIA4jjvNEsIF8FN05v2GUiqKIpmgtxl-Xldek3mn-wYvqxA6pcmt7cPPtjIGv4Rds8fW4DttGtfFL144-x3W2LZ41pNyF7G3e7wyjXa4tOZLq9BZc45O2qr3-uJvTtFqfv9aPpDl0-KxnC2JSoGGmLbJYmBVq7SiDS-yRPBc1Io10LR1kadpzeu6qFWuOONCK1aJKADKsjreeTJFV6Ov9aGTXnVBq7WyxsQYkrEigbxID6wPZz932ge5sTtnYjDJAFiaUAaDF4ws5az3Trfyw3Xbyu0lUDn0LMeeZexZDj1LiBo2anzkmnftDs7_i34BAax98w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112430215</pqid></control><display><type>article</type><title>A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Ang ; Du, Jinglian ; Guo, Zhipeng ; Wang, Qigui ; Xiong, Shoumei</creator><creatorcontrib>Zhang, Ang ; Du, Jinglian ; Guo, Zhipeng ; Wang, Qigui ; Xiong, Shoumei</creatorcontrib><description>Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dendritic fragmentation, splitting, and formation of solute plumes were simulated. Results showed that the dendritic growth patterns under convection exhibited remarkable difference from those without convection. The presence of flow led to variation of solute diffusion and upstream–downstream dendritic growth difference, which further influenced the development of dendritic arms and multi-dendritic competitive growth. When the convection intensity was magnified, the convection-induced anisotropy became dominated, and the growth patterns changed accordingly to accommodate the local thermodynamic variation.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-018-1418-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; ALGORITHMS ; ALUMINIUM ALLOYS ; Aluminum base alloys ; ANISOTROPY ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; Convection ; Copper ; COPPER ALLOYS ; DENDRITES ; Dendritic structure ; DIFFUSION ; EQUATIONS ; Finite element method ; FORCED CONVECTION ; FRAGMENTATION ; Grid refinement (mathematics) ; MATERIALS SCIENCE ; Metallic Materials ; Nanotechnology ; NATURAL CONVECTION ; Nonlinear equations ; NONLINEAR PROBLEMS ; PLUMES ; SIMULATION ; SOLUTES ; Structural Materials ; Surfaces and Interfaces ; THERMODYNAMICS ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2018-12, Vol.49 (6), p.3603-3615</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2018</rights><rights>Metallurgical and Materials Transactions B is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-14d7418cbc4a0d59736586bc2d1dfb9844b5bb9bc8c5256ec2a67411027bbb953</citedby><cites>FETCH-LOGICAL-c410t-14d7418cbc4a0d59736586bc2d1dfb9844b5bb9bc8c5256ec2a67411027bbb953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-018-1418-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-018-1418-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22931894$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ang</creatorcontrib><creatorcontrib>Du, Jinglian</creatorcontrib><creatorcontrib>Guo, Zhipeng</creatorcontrib><creatorcontrib>Wang, Qigui</creatorcontrib><creatorcontrib>Xiong, Shoumei</creatorcontrib><title>A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dendritic fragmentation, splitting, and formation of solute plumes were simulated. Results showed that the dendritic growth patterns under convection exhibited remarkable difference from those without convection. The presence of flow led to variation of solute diffusion and upstream–downstream dendritic growth difference, which further influenced the development of dendritic arms and multi-dendritic competitive growth. When the convection intensity was magnified, the convection-induced anisotropy became dominated, and the growth patterns changed accordingly to accommodate the local thermodynamic variation.</description><subject>Adaptive algorithms</subject><subject>ALGORITHMS</subject><subject>ALUMINIUM ALLOYS</subject><subject>Aluminum base alloys</subject><subject>ANISOTROPY</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Copper</subject><subject>COPPER ALLOYS</subject><subject>DENDRITES</subject><subject>Dendritic structure</subject><subject>DIFFUSION</subject><subject>EQUATIONS</subject><subject>Finite element method</subject><subject>FORCED CONVECTION</subject><subject>FRAGMENTATION</subject><subject>Grid refinement (mathematics)</subject><subject>MATERIALS SCIENCE</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>NATURAL CONVECTION</subject><subject>Nonlinear equations</subject><subject>NONLINEAR PROBLEMS</subject><subject>PLUMES</subject><subject>SIMULATION</subject><subject>SOLUTES</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>THERMODYNAMICS</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMFKxDAUDKLguvoB3gKeo3lpk7bHtbqrsKCge_AU2jR1u3QTTbLK-vWmVNiTl3mP92aGYRC6BHoNlGY3HkCIhFDICaQDHKEJ8DQhUIA4jjvNEsIF8FN05v2GUiqKIpmgtxl-Xldek3mn-wYvqxA6pcmt7cPPtjIGv4Rds8fW4DttGtfFL144-x3W2LZ41pNyF7G3e7wyjXa4tOZLq9BZc45O2qr3-uJvTtFqfv9aPpDl0-KxnC2JSoGGmLbJYmBVq7SiDS-yRPBc1Io10LR1kadpzeu6qFWuOONCK1aJKADKsjreeTJFV6Ov9aGTXnVBq7WyxsQYkrEigbxID6wPZz932ge5sTtnYjDJAFiaUAaDF4ws5az3Trfyw3Xbyu0lUDn0LMeeZexZDj1LiBo2anzkmnftDs7_i34BAax98w</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Zhang, Ang</creator><creator>Du, Jinglian</creator><creator>Guo, Zhipeng</creator><creator>Wang, Qigui</creator><creator>Xiong, Shoumei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20181201</creationdate><title>A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection</title><author>Zhang, Ang ; Du, Jinglian ; Guo, Zhipeng ; Wang, Qigui ; Xiong, Shoumei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-14d7418cbc4a0d59736586bc2d1dfb9844b5bb9bc8c5256ec2a67411027bbb953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>ALGORITHMS</topic><topic>ALUMINIUM ALLOYS</topic><topic>Aluminum base alloys</topic><topic>ANISOTROPY</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Copper</topic><topic>COPPER ALLOYS</topic><topic>DENDRITES</topic><topic>Dendritic structure</topic><topic>DIFFUSION</topic><topic>EQUATIONS</topic><topic>Finite element method</topic><topic>FORCED CONVECTION</topic><topic>FRAGMENTATION</topic><topic>Grid refinement (mathematics)</topic><topic>MATERIALS SCIENCE</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>NATURAL CONVECTION</topic><topic>Nonlinear equations</topic><topic>NONLINEAR PROBLEMS</topic><topic>PLUMES</topic><topic>SIMULATION</topic><topic>SOLUTES</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>THERMODYNAMICS</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ang</creatorcontrib><creatorcontrib>Du, Jinglian</creatorcontrib><creatorcontrib>Guo, Zhipeng</creatorcontrib><creatorcontrib>Wang, Qigui</creatorcontrib><creatorcontrib>Xiong, Shoumei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ang</au><au>Du, Jinglian</au><au>Guo, Zhipeng</au><au>Wang, Qigui</au><au>Xiong, Shoumei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>49</volume><issue>6</issue><spage>3603</spage><epage>3615</epage><pages>3603-3615</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>Effects of convection (forced and natural) on dendritic evolution of the Al-Cu alloy were investigated using a phase-field lattice-Boltzmann approach. The non-linear coupled equations were solved by applying a parallel and adaptive mesh refinement algorithm. Important physical aspects including dendritic fragmentation, splitting, and formation of solute plumes were simulated. Results showed that the dendritic growth patterns under convection exhibited remarkable difference from those without convection. The presence of flow led to variation of solute diffusion and upstream–downstream dendritic growth difference, which further influenced the development of dendritic arms and multi-dendritic competitive growth. When the convection intensity was magnified, the convection-induced anisotropy became dominated, and the growth patterns changed accordingly to accommodate the local thermodynamic variation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-018-1418-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2018-12, Vol.49 (6), p.3603-3615
issn 1073-5615
1543-1916
language eng
recordid cdi_osti_scitechconnect_22931894
source SpringerLink Journals - AutoHoldings
subjects Adaptive algorithms
ALGORITHMS
ALUMINIUM ALLOYS
Aluminum base alloys
ANISOTROPY
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computer simulation
Convection
Copper
COPPER ALLOYS
DENDRITES
Dendritic structure
DIFFUSION
EQUATIONS
Finite element method
FORCED CONVECTION
FRAGMENTATION
Grid refinement (mathematics)
MATERIALS SCIENCE
Metallic Materials
Nanotechnology
NATURAL CONVECTION
Nonlinear equations
NONLINEAR PROBLEMS
PLUMES
SIMULATION
SOLUTES
Structural Materials
Surfaces and Interfaces
THERMODYNAMICS
Thin Films
title A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Phase-Field%20Lattice-Boltzmann%20Study%20on%20Dendritic%20Growth%20of%20Al-Cu%20Alloy%20Under%20Convection&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Zhang,%20Ang&rft.date=2018-12-01&rft.volume=49&rft.issue=6&rft.spage=3603&rft.epage=3615&rft.pages=3603-3615&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-018-1418-1&rft_dat=%3Cproquest_osti_%3E2112430215%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112430215&rft_id=info:pmid/&rfr_iscdi=true