Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution

In bioprocesses, a microorganism with high tolerance to various stresses would be advantageous for efficient bio-based chemical production. Yeast Saccharomyces cerevisiae has long been used in the food industry because of its safety and convenience, and genetically engineered S. cerevisiae strains h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2019-11, Vol.189 (3), p.810-821
Hauptverfasser: Mitsui, Ryosuke, Yamada, Ryosuke, Ogino, Hiroyasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 821
container_issue 3
container_start_page 810
container_title Applied biochemistry and biotechnology
container_volume 189
creator Mitsui, Ryosuke
Yamada, Ryosuke
Ogino, Hiroyasu
description In bioprocesses, a microorganism with high tolerance to various stresses would be advantageous for efficient bio-based chemical production. Yeast Saccharomyces cerevisiae has long been used in the food industry because of its safety and convenience, and genetically engineered S. cerevisiae strains have been constructed and used for the production of various bio-based chemicals. In this study, we developed a novel genome shuffling method for S. cerevisiae using CRISPR-Cas. By using this, the thermotolerant mutant strain T8-292, which can grow well at 39 °C, was successfully created. The strain also showed higher cell viability in low pH and high ethanol concentration. In addition, the differences in genome structure between mutant and parent strains were suggested by random amplified polymorphic DNA PCR method. Our genome shuffling method could be a promising strategy for improvement of various stress tolerance in S. cerevisiae .
doi_str_mv 10.1007/s12010-019-03040-y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22927508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313919510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-c08554de354cc30447b9d0a0149b3303cc1ac823da417416ac0f22dd96e60a233</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EotvCC3BAkbhwMczY8SY-olVpVyoCdcsRWd7JLE2VxMVOVsrbY0hpb5wsy9_81j-fEG8QPiBA9TGhAgQJaCVoKEHOz8QKjclXZfG5WIGqtFSqtifiNKU7AFS1qV6KE42I1ii7Ej-2_X0MR26K3Rg5peImdBz9QFyEQ7HzRLc-hn4mTgVx5GObWs_Ffi4219vdt2u58Ul-4ab1Y8644CH0XJwfQzeNbRheiRcH3yV-_XCeie-fz282l_Lq68V28-lKkoH1KAlqY8qGtSmJcpOy2tsGPGBp91qDJkJPtdKNL7Eqce0JDko1jV3zGrzS-ky8W3JDGluXqB2ZbikMA9PolLKqMlBn6v1C5ca_Jk6j69tE3HV-4DClDGqFWKmyegp8RO_CFIfcwSmN2ubtIWRKLRTFkFLkg7uPbe_j7BDcH0VuUeSyIvdXkZvz0NuH6Gnfc_M48s9JBvQCpPw0_OT49Pd_Yn8DzA6aMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313919510</pqid></control><display><type>article</type><title>Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Mitsui, Ryosuke ; Yamada, Ryosuke ; Ogino, Hiroyasu</creator><creatorcontrib>Mitsui, Ryosuke ; Yamada, Ryosuke ; Ogino, Hiroyasu</creatorcontrib><description>In bioprocesses, a microorganism with high tolerance to various stresses would be advantageous for efficient bio-based chemical production. Yeast Saccharomyces cerevisiae has long been used in the food industry because of its safety and convenience, and genetically engineered S. cerevisiae strains have been constructed and used for the production of various bio-based chemicals. In this study, we developed a novel genome shuffling method for S. cerevisiae using CRISPR-Cas. By using this, the thermotolerant mutant strain T8-292, which can grow well at 39 °C, was successfully created. The strain also showed higher cell viability in low pH and high ethanol concentration. In addition, the differences in genome structure between mutant and parent strains were suggested by random amplified polymorphic DNA PCR method. Our genome shuffling method could be a promising strategy for improvement of various stress tolerance in S. cerevisiae .</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-019-03040-y</identifier><identifier>PMID: 31119529</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>60 APPLIED LIFE SCIENCES ; Baking yeast ; Biochemistry ; Biotechnology ; Cell viability ; Chemistry ; Chemistry and Materials Science ; CRISPR ; CRISPR-Cas Systems - genetics ; Deoxyribonucleic acid ; Directed Molecular Evolution - methods ; DNA ; DNA REPAIR ; ETHANOL ; FOOD INDUSTRY ; Food processing industry ; Genetic engineering ; Genome, Fungal - genetics ; Genomes ; Hydrogen-Ion Concentration ; Mutation ; Organic chemistry ; POLYMERASE CHAIN REACTION ; Random amplified polymorphic DNA ; Random Amplified Polymorphic DNA Technique ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - physiology ; Strains (organisms) ; Stress, Physiological - genetics ; Yeast ; Yeasts</subject><ispartof>Applied biochemistry and biotechnology, 2019-11, Vol.189 (3), p.810-821</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Applied Biochemistry and Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-c08554de354cc30447b9d0a0149b3303cc1ac823da417416ac0f22dd96e60a233</citedby><cites>FETCH-LOGICAL-c506t-c08554de354cc30447b9d0a0149b3303cc1ac823da417416ac0f22dd96e60a233</cites><orcidid>0000-0003-3820-7501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-019-03040-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-019-03040-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31119529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22927508$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitsui, Ryosuke</creatorcontrib><creatorcontrib>Yamada, Ryosuke</creatorcontrib><creatorcontrib>Ogino, Hiroyasu</creatorcontrib><title>Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>In bioprocesses, a microorganism with high tolerance to various stresses would be advantageous for efficient bio-based chemical production. Yeast Saccharomyces cerevisiae has long been used in the food industry because of its safety and convenience, and genetically engineered S. cerevisiae strains have been constructed and used for the production of various bio-based chemicals. In this study, we developed a novel genome shuffling method for S. cerevisiae using CRISPR-Cas. By using this, the thermotolerant mutant strain T8-292, which can grow well at 39 °C, was successfully created. The strain also showed higher cell viability in low pH and high ethanol concentration. In addition, the differences in genome structure between mutant and parent strains were suggested by random amplified polymorphic DNA PCR method. Our genome shuffling method could be a promising strategy for improvement of various stress tolerance in S. cerevisiae .</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Baking yeast</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Cell viability</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>Directed Molecular Evolution - methods</subject><subject>DNA</subject><subject>DNA REPAIR</subject><subject>ETHANOL</subject><subject>FOOD INDUSTRY</subject><subject>Food processing industry</subject><subject>Genetic engineering</subject><subject>Genome, Fungal - genetics</subject><subject>Genomes</subject><subject>Hydrogen-Ion Concentration</subject><subject>Mutation</subject><subject>Organic chemistry</subject><subject>POLYMERASE CHAIN REACTION</subject><subject>Random amplified polymorphic DNA</subject><subject>Random Amplified Polymorphic DNA Technique</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Strains (organisms)</subject><subject>Stress, Physiological - genetics</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhi0EotvCC3BAkbhwMczY8SY-olVpVyoCdcsRWd7JLE2VxMVOVsrbY0hpb5wsy9_81j-fEG8QPiBA9TGhAgQJaCVoKEHOz8QKjclXZfG5WIGqtFSqtifiNKU7AFS1qV6KE42I1ii7Ej-2_X0MR26K3Rg5peImdBz9QFyEQ7HzRLc-hn4mTgVx5GObWs_Ffi4219vdt2u58Ul-4ab1Y8644CH0XJwfQzeNbRheiRcH3yV-_XCeie-fz282l_Lq68V28-lKkoH1KAlqY8qGtSmJcpOy2tsGPGBp91qDJkJPtdKNL7Eqce0JDko1jV3zGrzS-ky8W3JDGluXqB2ZbikMA9PolLKqMlBn6v1C5ca_Jk6j69tE3HV-4DClDGqFWKmyegp8RO_CFIfcwSmN2ubtIWRKLRTFkFLkg7uPbe_j7BDcH0VuUeSyIvdXkZvz0NuH6Gnfc_M48s9JBvQCpPw0_OT49Pd_Yn8DzA6aMQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Mitsui, Ryosuke</creator><creator>Yamada, Ryosuke</creator><creator>Ogino, Hiroyasu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3820-7501</orcidid></search><sort><creationdate>20191101</creationdate><title>Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution</title><author>Mitsui, Ryosuke ; Yamada, Ryosuke ; Ogino, Hiroyasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-c08554de354cc30447b9d0a0149b3303cc1ac823da417416ac0f22dd96e60a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Baking yeast</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Cell viability</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>Directed Molecular Evolution - methods</topic><topic>DNA</topic><topic>DNA REPAIR</topic><topic>ETHANOL</topic><topic>FOOD INDUSTRY</topic><topic>Food processing industry</topic><topic>Genetic engineering</topic><topic>Genome, Fungal - genetics</topic><topic>Genomes</topic><topic>Hydrogen-Ion Concentration</topic><topic>Mutation</topic><topic>Organic chemistry</topic><topic>POLYMERASE CHAIN REACTION</topic><topic>Random amplified polymorphic DNA</topic><topic>Random Amplified Polymorphic DNA Technique</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Strains (organisms)</topic><topic>Stress, Physiological - genetics</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitsui, Ryosuke</creatorcontrib><creatorcontrib>Yamada, Ryosuke</creatorcontrib><creatorcontrib>Ogino, Hiroyasu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitsui, Ryosuke</au><au>Yamada, Ryosuke</au><au>Ogino, Hiroyasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>189</volume><issue>3</issue><spage>810</spage><epage>821</epage><pages>810-821</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>In bioprocesses, a microorganism with high tolerance to various stresses would be advantageous for efficient bio-based chemical production. Yeast Saccharomyces cerevisiae has long been used in the food industry because of its safety and convenience, and genetically engineered S. cerevisiae strains have been constructed and used for the production of various bio-based chemicals. In this study, we developed a novel genome shuffling method for S. cerevisiae using CRISPR-Cas. By using this, the thermotolerant mutant strain T8-292, which can grow well at 39 °C, was successfully created. The strain also showed higher cell viability in low pH and high ethanol concentration. In addition, the differences in genome structure between mutant and parent strains were suggested by random amplified polymorphic DNA PCR method. Our genome shuffling method could be a promising strategy for improvement of various stress tolerance in S. cerevisiae .</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31119529</pmid><doi>10.1007/s12010-019-03040-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3820-7501</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0273-2289
ispartof Applied biochemistry and biotechnology, 2019-11, Vol.189 (3), p.810-821
issn 0273-2289
1559-0291
language eng
recordid cdi_osti_scitechconnect_22927508
source MEDLINE; SpringerNature Journals
subjects 60 APPLIED LIFE SCIENCES
Baking yeast
Biochemistry
Biotechnology
Cell viability
Chemistry
Chemistry and Materials Science
CRISPR
CRISPR-Cas Systems - genetics
Deoxyribonucleic acid
Directed Molecular Evolution - methods
DNA
DNA REPAIR
ETHANOL
FOOD INDUSTRY
Food processing industry
Genetic engineering
Genome, Fungal - genetics
Genomes
Hydrogen-Ion Concentration
Mutation
Organic chemistry
POLYMERASE CHAIN REACTION
Random amplified polymorphic DNA
Random Amplified Polymorphic DNA Technique
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - physiology
Strains (organisms)
Stress, Physiological - genetics
Yeast
Yeasts
title Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T12%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Stress%20Tolerance%20of%20Saccharomyces%20cerevisiae%20by%20CRISPR-Cas-Mediated%20Genome%20Evolution&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Mitsui,%20Ryosuke&rft.date=2019-11-01&rft.volume=189&rft.issue=3&rft.spage=810&rft.epage=821&rft.pages=810-821&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-019-03040-y&rft_dat=%3Cproquest_osti_%3E2313919510%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313919510&rft_id=info:pmid/31119529&rfr_iscdi=true