Techniques for Polytypic Transformations in Silicon Carbide
— Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry P 3 m 1 and monoclinic symmetry Cm make it much easier to move the close-packed layers in such transition...
Gespeichert in:
Veröffentlicht in: | Physics of the solid state 2019-08, Vol.61 (8), p.1389-1393 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 8 |
container_start_page | 1389 |
container_title | Physics of the solid state |
container_volume | 61 |
creator | Kukushkin, S. A. Osipov, A. V. |
description | —
Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry
P
3
m
1 and monoclinic symmetry
Cm
make it much easier to move the close-packed layers in such transitions by breaking them up into separate stages. It has been found that these two polytype transformations proceed in completely different ways. The links being relocated noticeably tilted compared to their initial position at the transition 2H → 6H, which allows the compression of the SiC links in the plane (
). The transition 3C → 6H is carried out through the formation of Si–Si and C–C auxiliary links, living for a short time and helping densely packed layers to swap places. As a result, the activation barrier of the transformation 2H → 6H (1.7 eV/atom) is significantly less than the activation barrier of the transformation 3C → 6H (3.6 eV/atom), which means that the second transition should occur at the temperatures by 750–800°C higher than the first one. The energy profiles of this polytypic transformations, as well as the geometry of all intermediate and transition phases have been calculated. It has been shown that all the transition states have monoclinic symmetry. |
doi_str_mv | 10.1134/S106378341908016X |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22925171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A596346914</galeid><sourcerecordid>A596346914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c056422e42e823135783d051e3af95120334e44578fa79420774771c25694f933</originalsourceid><addsrcrecordid>eNp1kU9LAzEQxRdRsFY_gLcFTx62ZpJs0uCpFP8UCoqt4C3ENFtT2qQmKdhvb5YViojMIcPL7w1vmKK4BDQAIPRmBogRPiQUBBoiYG9HRQ-QQBWjDB23PSNV-39anMW4QggAatErbudGfzj7uTOxbHwon_16n_Zbq8t5UC5maaOS9S6W1pUzu7bau3KswrtdmPPipFHraC5-3n7xen83Hz9W06eHyXg0rTRhIlUa1YxibCg2Q0yA1DnGAtVgiGpEDRgRQg2lWW4UFxQjzinnoHHNBG0EIf3iqpvrY7Iyapty5pzDGZ0kxgLXwOFAbYNv10ly5XfB5WCZ4RgzBoJmatBRS7U20rrGp6B0roXZtLuZxmZ9VAtGKBPQGq5_GTKTzFdaql2McjJ7-c1Cx-rgYwymkdtgNyrsJSDZnkn-OVP24M4TM-uWJhxi_2_6Boeajz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272266194</pqid></control><display><type>article</type><title>Techniques for Polytypic Transformations in Silicon Carbide</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kukushkin, S. A. ; Osipov, A. V.</creator><creatorcontrib>Kukushkin, S. A. ; Osipov, A. V.</creatorcontrib><description>—
Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry
P
3
m
1 and monoclinic symmetry
Cm
make it much easier to move the close-packed layers in such transitions by breaking them up into separate stages. It has been found that these two polytype transformations proceed in completely different ways. The links being relocated noticeably tilted compared to their initial position at the transition 2H → 6H, which allows the compression of the SiC links in the plane (
). The transition 3C → 6H is carried out through the formation of Si–Si and C–C auxiliary links, living for a short time and helping densely packed layers to swap places. As a result, the activation barrier of the transformation 2H → 6H (1.7 eV/atom) is significantly less than the activation barrier of the transformation 3C → 6H (3.6 eV/atom), which means that the second transition should occur at the temperatures by 750–800°C higher than the first one. The energy profiles of this polytypic transformations, as well as the geometry of all intermediate and transition phases have been calculated. It has been shown that all the transition states have monoclinic symmetry.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S106378341908016X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Activation ; Comparative analysis ; COMPRESSION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DENSITY FUNCTIONAL METHOD ; Links ; Methods ; MONOCLINIC LATTICES ; PHASE TRANSFORMATIONS ; Physics ; Physics and Astronomy ; Semiconductors ; Silicon ; Silicon carbide ; SILICON CARBIDES ; Solid State Physics ; SYMMETRY ; Transformations</subject><ispartof>Physics of the solid state, 2019-08, Vol.61 (8), p.1389-1393</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-c056422e42e823135783d051e3af95120334e44578fa79420774771c25694f933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106378341908016X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106378341908016X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22925171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kukushkin, S. A.</creatorcontrib><creatorcontrib>Osipov, A. V.</creatorcontrib><title>Techniques for Polytypic Transformations in Silicon Carbide</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>—
Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry
P
3
m
1 and monoclinic symmetry
Cm
make it much easier to move the close-packed layers in such transitions by breaking them up into separate stages. It has been found that these two polytype transformations proceed in completely different ways. The links being relocated noticeably tilted compared to their initial position at the transition 2H → 6H, which allows the compression of the SiC links in the plane (
). The transition 3C → 6H is carried out through the formation of Si–Si and C–C auxiliary links, living for a short time and helping densely packed layers to swap places. As a result, the activation barrier of the transformation 2H → 6H (1.7 eV/atom) is significantly less than the activation barrier of the transformation 3C → 6H (3.6 eV/atom), which means that the second transition should occur at the temperatures by 750–800°C higher than the first one. The energy profiles of this polytypic transformations, as well as the geometry of all intermediate and transition phases have been calculated. It has been shown that all the transition states have monoclinic symmetry.</description><subject>Activation</subject><subject>Comparative analysis</subject><subject>COMPRESSION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Links</subject><subject>Methods</subject><subject>MONOCLINIC LATTICES</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>SILICON CARBIDES</subject><subject>Solid State Physics</subject><subject>SYMMETRY</subject><subject>Transformations</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9LAzEQxRdRsFY_gLcFTx62ZpJs0uCpFP8UCoqt4C3ENFtT2qQmKdhvb5YViojMIcPL7w1vmKK4BDQAIPRmBogRPiQUBBoiYG9HRQ-QQBWjDB23PSNV-39anMW4QggAatErbudGfzj7uTOxbHwon_16n_Zbq8t5UC5maaOS9S6W1pUzu7bau3KswrtdmPPipFHraC5-3n7xen83Hz9W06eHyXg0rTRhIlUa1YxibCg2Q0yA1DnGAtVgiGpEDRgRQg2lWW4UFxQjzinnoHHNBG0EIf3iqpvrY7Iyapty5pzDGZ0kxgLXwOFAbYNv10ly5XfB5WCZ4RgzBoJmatBRS7U20rrGp6B0roXZtLuZxmZ9VAtGKBPQGq5_GTKTzFdaql2McjJ7-c1Cx-rgYwymkdtgNyrsJSDZnkn-OVP24M4TM-uWJhxi_2_6Boeajz8</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kukushkin, S. A.</creator><creator>Osipov, A. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20190801</creationdate><title>Techniques for Polytypic Transformations in Silicon Carbide</title><author>Kukushkin, S. A. ; Osipov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c056422e42e823135783d051e3af95120334e44578fa79420774771c25694f933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Comparative analysis</topic><topic>COMPRESSION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Links</topic><topic>Methods</topic><topic>MONOCLINIC LATTICES</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>SILICON CARBIDES</topic><topic>Solid State Physics</topic><topic>SYMMETRY</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kukushkin, S. A.</creatorcontrib><creatorcontrib>Osipov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kukushkin, S. A.</au><au>Osipov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Techniques for Polytypic Transformations in Silicon Carbide</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>61</volume><issue>8</issue><spage>1389</spage><epage>1393</epage><pages>1389-1393</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>—
Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry
P
3
m
1 and monoclinic symmetry
Cm
make it much easier to move the close-packed layers in such transitions by breaking them up into separate stages. It has been found that these two polytype transformations proceed in completely different ways. The links being relocated noticeably tilted compared to their initial position at the transition 2H → 6H, which allows the compression of the SiC links in the plane (
). The transition 3C → 6H is carried out through the formation of Si–Si and C–C auxiliary links, living for a short time and helping densely packed layers to swap places. As a result, the activation barrier of the transformation 2H → 6H (1.7 eV/atom) is significantly less than the activation barrier of the transformation 3C → 6H (3.6 eV/atom), which means that the second transition should occur at the temperatures by 750–800°C higher than the first one. The energy profiles of this polytypic transformations, as well as the geometry of all intermediate and transition phases have been calculated. It has been shown that all the transition states have monoclinic symmetry.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S106378341908016X</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7834 |
ispartof | Physics of the solid state, 2019-08, Vol.61 (8), p.1389-1393 |
issn | 1063-7834 1090-6460 |
language | eng |
recordid | cdi_osti_scitechconnect_22925171 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activation Comparative analysis COMPRESSION CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DENSITY FUNCTIONAL METHOD Links Methods MONOCLINIC LATTICES PHASE TRANSFORMATIONS Physics Physics and Astronomy Semiconductors Silicon Silicon carbide SILICON CARBIDES Solid State Physics SYMMETRY Transformations |
title | Techniques for Polytypic Transformations in Silicon Carbide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Techniques%20for%20Polytypic%20Transformations%20in%20Silicon%20Carbide&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Kukushkin,%20S.%20A.&rft.date=2019-08-01&rft.volume=61&rft.issue=8&rft.spage=1389&rft.epage=1393&rft.pages=1389-1393&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S106378341908016X&rft_dat=%3Cgale_osti_%3EA596346914%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272266194&rft_id=info:pmid/&rft_galeid=A596346914&rfr_iscdi=true |