Techniques for Polytypic Transformations in Silicon Carbide

— Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry P 3 m 1 and monoclinic symmetry Cm make it much easier to move the close-packed layers in such transition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the solid state 2019-08, Vol.61 (8), p.1389-1393
Hauptverfasser: Kukushkin, S. A., Osipov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1393
container_issue 8
container_start_page 1389
container_title Physics of the solid state
container_volume 61
creator Kukushkin, S. A.
Osipov, A. V.
description — Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry P 3 m 1 and monoclinic symmetry Cm make it much easier to move the close-packed layers in such transitions by breaking them up into separate stages. It has been found that these two polytype transformations proceed in completely different ways. The links being relocated noticeably tilted compared to their initial position at the transition 2H → 6H, which allows the compression of the SiC links in the plane ( ). The transition 3C → 6H is carried out through the formation of Si–Si and C–C auxiliary links, living for a short time and helping densely packed layers to swap places. As a result, the activation barrier of the transformation 2H → 6H (1.7 eV/atom) is significantly less than the activation barrier of the transformation 3C → 6H (3.6 eV/atom), which means that the second transition should occur at the temperatures by 750–800°C higher than the first one. The energy profiles of this polytypic transformations, as well as the geometry of all intermediate and transition phases have been calculated. It has been shown that all the transition states have monoclinic symmetry.
doi_str_mv 10.1134/S106378341908016X
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22925171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A596346914</galeid><sourcerecordid>A596346914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c056422e42e823135783d051e3af95120334e44578fa79420774771c25694f933</originalsourceid><addsrcrecordid>eNp1kU9LAzEQxRdRsFY_gLcFTx62ZpJs0uCpFP8UCoqt4C3ENFtT2qQmKdhvb5YViojMIcPL7w1vmKK4BDQAIPRmBogRPiQUBBoiYG9HRQ-QQBWjDB23PSNV-39anMW4QggAatErbudGfzj7uTOxbHwon_16n_Zbq8t5UC5maaOS9S6W1pUzu7bau3KswrtdmPPipFHraC5-3n7xen83Hz9W06eHyXg0rTRhIlUa1YxibCg2Q0yA1DnGAtVgiGpEDRgRQg2lWW4UFxQjzinnoHHNBG0EIf3iqpvrY7Iyapty5pzDGZ0kxgLXwOFAbYNv10ly5XfB5WCZ4RgzBoJmatBRS7U20rrGp6B0roXZtLuZxmZ9VAtGKBPQGq5_GTKTzFdaql2McjJ7-c1Cx-rgYwymkdtgNyrsJSDZnkn-OVP24M4TM-uWJhxi_2_6Boeajz8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272266194</pqid></control><display><type>article</type><title>Techniques for Polytypic Transformations in Silicon Carbide</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kukushkin, S. A. ; Osipov, A. V.</creator><creatorcontrib>Kukushkin, S. A. ; Osipov, A. V.</creatorcontrib><description>— Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry P 3 m 1 and monoclinic symmetry Cm make it much easier to move the close-packed layers in such transitions by breaking them up into separate stages. It has been found that these two polytype transformations proceed in completely different ways. The links being relocated noticeably tilted compared to their initial position at the transition 2H → 6H, which allows the compression of the SiC links in the plane ( ). The transition 3C → 6H is carried out through the formation of Si–Si and C–C auxiliary links, living for a short time and helping densely packed layers to swap places. As a result, the activation barrier of the transformation 2H → 6H (1.7 eV/atom) is significantly less than the activation barrier of the transformation 3C → 6H (3.6 eV/atom), which means that the second transition should occur at the temperatures by 750–800°C higher than the first one. The energy profiles of this polytypic transformations, as well as the geometry of all intermediate and transition phases have been calculated. It has been shown that all the transition states have monoclinic symmetry.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S106378341908016X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Activation ; Comparative analysis ; COMPRESSION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DENSITY FUNCTIONAL METHOD ; Links ; Methods ; MONOCLINIC LATTICES ; PHASE TRANSFORMATIONS ; Physics ; Physics and Astronomy ; Semiconductors ; Silicon ; Silicon carbide ; SILICON CARBIDES ; Solid State Physics ; SYMMETRY ; Transformations</subject><ispartof>Physics of the solid state, 2019-08, Vol.61 (8), p.1389-1393</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-c056422e42e823135783d051e3af95120334e44578fa79420774771c25694f933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106378341908016X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106378341908016X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22925171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kukushkin, S. A.</creatorcontrib><creatorcontrib>Osipov, A. V.</creatorcontrib><title>Techniques for Polytypic Transformations in Silicon Carbide</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>— Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry P 3 m 1 and monoclinic symmetry Cm make it much easier to move the close-packed layers in such transitions by breaking them up into separate stages. It has been found that these two polytype transformations proceed in completely different ways. The links being relocated noticeably tilted compared to their initial position at the transition 2H → 6H, which allows the compression of the SiC links in the plane ( ). The transition 3C → 6H is carried out through the formation of Si–Si and C–C auxiliary links, living for a short time and helping densely packed layers to swap places. As a result, the activation barrier of the transformation 2H → 6H (1.7 eV/atom) is significantly less than the activation barrier of the transformation 3C → 6H (3.6 eV/atom), which means that the second transition should occur at the temperatures by 750–800°C higher than the first one. The energy profiles of this polytypic transformations, as well as the geometry of all intermediate and transition phases have been calculated. It has been shown that all the transition states have monoclinic symmetry.</description><subject>Activation</subject><subject>Comparative analysis</subject><subject>COMPRESSION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Links</subject><subject>Methods</subject><subject>MONOCLINIC LATTICES</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>SILICON CARBIDES</subject><subject>Solid State Physics</subject><subject>SYMMETRY</subject><subject>Transformations</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU9LAzEQxRdRsFY_gLcFTx62ZpJs0uCpFP8UCoqt4C3ENFtT2qQmKdhvb5YViojMIcPL7w1vmKK4BDQAIPRmBogRPiQUBBoiYG9HRQ-QQBWjDB23PSNV-39anMW4QggAatErbudGfzj7uTOxbHwon_16n_Zbq8t5UC5maaOS9S6W1pUzu7bau3KswrtdmPPipFHraC5-3n7xen83Hz9W06eHyXg0rTRhIlUa1YxibCg2Q0yA1DnGAtVgiGpEDRgRQg2lWW4UFxQjzinnoHHNBG0EIf3iqpvrY7Iyapty5pzDGZ0kxgLXwOFAbYNv10ly5XfB5WCZ4RgzBoJmatBRS7U20rrGp6B0roXZtLuZxmZ9VAtGKBPQGq5_GTKTzFdaql2McjJ7-c1Cx-rgYwymkdtgNyrsJSDZnkn-OVP24M4TM-uWJhxi_2_6Boeajz8</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kukushkin, S. A.</creator><creator>Osipov, A. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20190801</creationdate><title>Techniques for Polytypic Transformations in Silicon Carbide</title><author>Kukushkin, S. A. ; Osipov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c056422e42e823135783d051e3af95120334e44578fa79420774771c25694f933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Comparative analysis</topic><topic>COMPRESSION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Links</topic><topic>Methods</topic><topic>MONOCLINIC LATTICES</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>SILICON CARBIDES</topic><topic>Solid State Physics</topic><topic>SYMMETRY</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kukushkin, S. A.</creatorcontrib><creatorcontrib>Osipov, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kukushkin, S. A.</au><au>Osipov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Techniques for Polytypic Transformations in Silicon Carbide</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>61</volume><issue>8</issue><spage>1389</spage><epage>1393</epage><pages>1389-1393</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>— Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry P 3 m 1 and monoclinic symmetry Cm make it much easier to move the close-packed layers in such transitions by breaking them up into separate stages. It has been found that these two polytype transformations proceed in completely different ways. The links being relocated noticeably tilted compared to their initial position at the transition 2H → 6H, which allows the compression of the SiC links in the plane ( ). The transition 3C → 6H is carried out through the formation of Si–Si and C–C auxiliary links, living for a short time and helping densely packed layers to swap places. As a result, the activation barrier of the transformation 2H → 6H (1.7 eV/atom) is significantly less than the activation barrier of the transformation 3C → 6H (3.6 eV/atom), which means that the second transition should occur at the temperatures by 750–800°C higher than the first one. The energy profiles of this polytypic transformations, as well as the geometry of all intermediate and transition phases have been calculated. It has been shown that all the transition states have monoclinic symmetry.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S106378341908016X</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2019-08, Vol.61 (8), p.1389-1393
issn 1063-7834
1090-6460
language eng
recordid cdi_osti_scitechconnect_22925171
source SpringerLink Journals - AutoHoldings
subjects Activation
Comparative analysis
COMPRESSION
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DENSITY FUNCTIONAL METHOD
Links
Methods
MONOCLINIC LATTICES
PHASE TRANSFORMATIONS
Physics
Physics and Astronomy
Semiconductors
Silicon
Silicon carbide
SILICON CARBIDES
Solid State Physics
SYMMETRY
Transformations
title Techniques for Polytypic Transformations in Silicon Carbide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Techniques%20for%20Polytypic%20Transformations%20in%20Silicon%20Carbide&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Kukushkin,%20S.%20A.&rft.date=2019-08-01&rft.volume=61&rft.issue=8&rft.spage=1389&rft.epage=1393&rft.pages=1389-1393&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S106378341908016X&rft_dat=%3Cgale_osti_%3EA596346914%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272266194&rft_id=info:pmid/&rft_galeid=A596346914&rfr_iscdi=true