The Superconductor-Superinsulator Transition: S-duality and the QCD on the Desktop

We show that the nature of quantum phases around the superconductor-insulator transition (SIT) is controlled by charge-vortex topological interactions, and does not depend on the details of material parameters and disorder. We find three distinct phases, superconductor, superinsulator, and bosonic t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of superconductivity and novel magnetism 2019-01, Vol.32 (1), p.47-51
Hauptverfasser: Diamantini, M. Cristina, Gammaitoni, Luca, Trugenberger, Carlo A., Vinokur, Valerii M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 47
container_title Journal of superconductivity and novel magnetism
container_volume 32
creator Diamantini, M. Cristina
Gammaitoni, Luca
Trugenberger, Carlo A.
Vinokur, Valerii M.
description We show that the nature of quantum phases around the superconductor-insulator transition (SIT) is controlled by charge-vortex topological interactions, and does not depend on the details of material parameters and disorder. We find three distinct phases, superconductor, superinsulator, and bosonic topological insulator. The superinsulator is a state of matter with infinite resistance in a finite temperature range, which is the S-dual of the superconductor and in which charge transport is prevented by electric strings binding charges of opposite sign. The electric strings ensuring linear confinement of charges are generated by instantons and are dual to superconducting Abrikosov vortices. Material parameters and disorder enter the London penetration depth of the superconductor, the string tension of the superinsulator and the quantum fluctuation parameter driving the transition between them. They are entirely encoded in four phenomenological parameters of a topological gauge theory of the SIT. Finally, we point out that, in the context of strong coupling gauge theories, the many-body localization phenomenon that is often referred to as an underlying mechanism for superinsulation is a mere transcription of the well-known phenomenon of confinement into solid-state physics language and is entirely driven by endogenous disorder embodied by instantons with no need of exogenous disorder.
doi_str_mv 10.1007/s10948-018-4943-x
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22919628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10948_018_4943_x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b331bd04dd617991d1392a3b52eb257746b4bb25fa7e305f7604b2ec7c66d33a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKs_wNuC52g-N403af0CQbT1HLJJ1m6tSUmy0P5706549PTOwDwvzABwidE1RkjcJIwkm0CEJ5BJRuH2CIww5wJiycTxn6byFJyltEKIcYrqEXhfLF017zcumuBtb3KI8GA7n_q1LrZaRO1Tl7vgb6s5tL1ed3lXaW-rXNi36awK_iBnLn3lsDkHJ61eJ3fxe8fg4-F-MX2CL6-Pz9O7F2golxk2lOLGImZtjYWU2GIqiaYNJ64hXAhWN6wpqtXCUcRbUSPWEGeEqWtLqaZjcDX8DSl3KpkuO7MsLbwzWREisazJpKTwkDIxpBRdqzax-9ZxpzBS--nUMJ0q06n9dGpbGDIwqWT9p4tqFfroS5l_oB81cXGz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Superconductor-Superinsulator Transition: S-duality and the QCD on the Desktop</title><source>Springer Online Journals Complete</source><creator>Diamantini, M. Cristina ; Gammaitoni, Luca ; Trugenberger, Carlo A. ; Vinokur, Valerii M.</creator><creatorcontrib>Diamantini, M. Cristina ; Gammaitoni, Luca ; Trugenberger, Carlo A. ; Vinokur, Valerii M.</creatorcontrib><description>We show that the nature of quantum phases around the superconductor-insulator transition (SIT) is controlled by charge-vortex topological interactions, and does not depend on the details of material parameters and disorder. We find three distinct phases, superconductor, superinsulator, and bosonic topological insulator. The superinsulator is a state of matter with infinite resistance in a finite temperature range, which is the S-dual of the superconductor and in which charge transport is prevented by electric strings binding charges of opposite sign. The electric strings ensuring linear confinement of charges are generated by instantons and are dual to superconducting Abrikosov vortices. Material parameters and disorder enter the London penetration depth of the superconductor, the string tension of the superinsulator and the quantum fluctuation parameter driving the transition between them. They are entirely encoded in four phenomenological parameters of a topological gauge theory of the SIT. Finally, we point out that, in the context of strong coupling gauge theories, the many-body localization phenomenon that is often referred to as an underlying mechanism for superinsulation is a mere transcription of the well-known phenomenon of confinement into solid-state physics language and is entirely driven by endogenous disorder embodied by instantons with no need of exogenous disorder.</description><identifier>ISSN: 1557-1939</identifier><identifier>EISSN: 1557-1947</identifier><identifier>DOI: 10.1007/s10948-018-4943-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ABRIKOSOV THEORY ; Characterization and Evaluation of Materials ; CHARGE TRANSPORT ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; FLUCTUATIONS ; GAUGE INVARIANCE ; INSTANTONS ; Magnetic Materials ; Magnetism ; MANY-BODY PROBLEM ; Original Paper ; PENETRATION DEPTH ; PHASE TRANSFORMATIONS ; Physics ; Physics and Astronomy ; QUANTUM CHROMODYNAMICS ; SOLID STATE PHYSICS ; STRONG-COUPLING MODEL ; Strongly Correlated Systems ; Superconductivity ; SUPERCONDUCTORS</subject><ispartof>Journal of superconductivity and novel magnetism, 2019-01, Vol.32 (1), p.47-51</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b331bd04dd617991d1392a3b52eb257746b4bb25fa7e305f7604b2ec7c66d33a3</citedby><cites>FETCH-LOGICAL-c359t-b331bd04dd617991d1392a3b52eb257746b4bb25fa7e305f7604b2ec7c66d33a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10948-018-4943-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10948-018-4943-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22919628$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Diamantini, M. Cristina</creatorcontrib><creatorcontrib>Gammaitoni, Luca</creatorcontrib><creatorcontrib>Trugenberger, Carlo A.</creatorcontrib><creatorcontrib>Vinokur, Valerii M.</creatorcontrib><title>The Superconductor-Superinsulator Transition: S-duality and the QCD on the Desktop</title><title>Journal of superconductivity and novel magnetism</title><addtitle>J Supercond Nov Magn</addtitle><description>We show that the nature of quantum phases around the superconductor-insulator transition (SIT) is controlled by charge-vortex topological interactions, and does not depend on the details of material parameters and disorder. We find three distinct phases, superconductor, superinsulator, and bosonic topological insulator. The superinsulator is a state of matter with infinite resistance in a finite temperature range, which is the S-dual of the superconductor and in which charge transport is prevented by electric strings binding charges of opposite sign. The electric strings ensuring linear confinement of charges are generated by instantons and are dual to superconducting Abrikosov vortices. Material parameters and disorder enter the London penetration depth of the superconductor, the string tension of the superinsulator and the quantum fluctuation parameter driving the transition between them. They are entirely encoded in four phenomenological parameters of a topological gauge theory of the SIT. Finally, we point out that, in the context of strong coupling gauge theories, the many-body localization phenomenon that is often referred to as an underlying mechanism for superinsulation is a mere transcription of the well-known phenomenon of confinement into solid-state physics language and is entirely driven by endogenous disorder embodied by instantons with no need of exogenous disorder.</description><subject>ABRIKOSOV THEORY</subject><subject>Characterization and Evaluation of Materials</subject><subject>CHARGE TRANSPORT</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>FLUCTUATIONS</subject><subject>GAUGE INVARIANCE</subject><subject>INSTANTONS</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MANY-BODY PROBLEM</subject><subject>Original Paper</subject><subject>PENETRATION DEPTH</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>QUANTUM CHROMODYNAMICS</subject><subject>SOLID STATE PHYSICS</subject><subject>STRONG-COUPLING MODEL</subject><subject>Strongly Correlated Systems</subject><subject>Superconductivity</subject><subject>SUPERCONDUCTORS</subject><issn>1557-1939</issn><issn>1557-1947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEYhIMoWKs_wNuC52g-N403af0CQbT1HLJJ1m6tSUmy0P5706549PTOwDwvzABwidE1RkjcJIwkm0CEJ5BJRuH2CIww5wJiycTxn6byFJyltEKIcYrqEXhfLF017zcumuBtb3KI8GA7n_q1LrZaRO1Tl7vgb6s5tL1ed3lXaW-rXNi36awK_iBnLn3lsDkHJ61eJ3fxe8fg4-F-MX2CL6-Pz9O7F2golxk2lOLGImZtjYWU2GIqiaYNJ64hXAhWN6wpqtXCUcRbUSPWEGeEqWtLqaZjcDX8DSl3KpkuO7MsLbwzWREisazJpKTwkDIxpBRdqzax-9ZxpzBS--nUMJ0q06n9dGpbGDIwqWT9p4tqFfroS5l_oB81cXGz</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Diamantini, M. Cristina</creator><creator>Gammaitoni, Luca</creator><creator>Trugenberger, Carlo A.</creator><creator>Vinokur, Valerii M.</creator><general>Springer US</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190101</creationdate><title>The Superconductor-Superinsulator Transition: S-duality and the QCD on the Desktop</title><author>Diamantini, M. Cristina ; Gammaitoni, Luca ; Trugenberger, Carlo A. ; Vinokur, Valerii M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b331bd04dd617991d1392a3b52eb257746b4bb25fa7e305f7604b2ec7c66d33a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ABRIKOSOV THEORY</topic><topic>Characterization and Evaluation of Materials</topic><topic>CHARGE TRANSPORT</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>FLUCTUATIONS</topic><topic>GAUGE INVARIANCE</topic><topic>INSTANTONS</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MANY-BODY PROBLEM</topic><topic>Original Paper</topic><topic>PENETRATION DEPTH</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>QUANTUM CHROMODYNAMICS</topic><topic>SOLID STATE PHYSICS</topic><topic>STRONG-COUPLING MODEL</topic><topic>Strongly Correlated Systems</topic><topic>Superconductivity</topic><topic>SUPERCONDUCTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diamantini, M. Cristina</creatorcontrib><creatorcontrib>Gammaitoni, Luca</creatorcontrib><creatorcontrib>Trugenberger, Carlo A.</creatorcontrib><creatorcontrib>Vinokur, Valerii M.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of superconductivity and novel magnetism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diamantini, M. Cristina</au><au>Gammaitoni, Luca</au><au>Trugenberger, Carlo A.</au><au>Vinokur, Valerii M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Superconductor-Superinsulator Transition: S-duality and the QCD on the Desktop</atitle><jtitle>Journal of superconductivity and novel magnetism</jtitle><stitle>J Supercond Nov Magn</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>32</volume><issue>1</issue><spage>47</spage><epage>51</epage><pages>47-51</pages><issn>1557-1939</issn><eissn>1557-1947</eissn><abstract>We show that the nature of quantum phases around the superconductor-insulator transition (SIT) is controlled by charge-vortex topological interactions, and does not depend on the details of material parameters and disorder. We find three distinct phases, superconductor, superinsulator, and bosonic topological insulator. The superinsulator is a state of matter with infinite resistance in a finite temperature range, which is the S-dual of the superconductor and in which charge transport is prevented by electric strings binding charges of opposite sign. The electric strings ensuring linear confinement of charges are generated by instantons and are dual to superconducting Abrikosov vortices. Material parameters and disorder enter the London penetration depth of the superconductor, the string tension of the superinsulator and the quantum fluctuation parameter driving the transition between them. They are entirely encoded in four phenomenological parameters of a topological gauge theory of the SIT. Finally, we point out that, in the context of strong coupling gauge theories, the many-body localization phenomenon that is often referred to as an underlying mechanism for superinsulation is a mere transcription of the well-known phenomenon of confinement into solid-state physics language and is entirely driven by endogenous disorder embodied by instantons with no need of exogenous disorder.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10948-018-4943-x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1557-1939
ispartof Journal of superconductivity and novel magnetism, 2019-01, Vol.32 (1), p.47-51
issn 1557-1939
1557-1947
language eng
recordid cdi_osti_scitechconnect_22919628
source Springer Online Journals Complete
subjects ABRIKOSOV THEORY
Characterization and Evaluation of Materials
CHARGE TRANSPORT
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
FLUCTUATIONS
GAUGE INVARIANCE
INSTANTONS
Magnetic Materials
Magnetism
MANY-BODY PROBLEM
Original Paper
PENETRATION DEPTH
PHASE TRANSFORMATIONS
Physics
Physics and Astronomy
QUANTUM CHROMODYNAMICS
SOLID STATE PHYSICS
STRONG-COUPLING MODEL
Strongly Correlated Systems
Superconductivity
SUPERCONDUCTORS
title The Superconductor-Superinsulator Transition: S-duality and the QCD on the Desktop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Superconductor-Superinsulator%20Transition:%20S-duality%20and%20the%20QCD%20on%20the%20Desktop&rft.jtitle=Journal%20of%20superconductivity%20and%20novel%20magnetism&rft.au=Diamantini,%20M.%20Cristina&rft.date=2019-01-01&rft.volume=32&rft.issue=1&rft.spage=47&rft.epage=51&rft.pages=47-51&rft.issn=1557-1939&rft.eissn=1557-1947&rft_id=info:doi/10.1007/s10948-018-4943-x&rft_dat=%3Ccrossref_osti_%3E10_1007_s10948_018_4943_x%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true