Optical Tomograms of Multiple-Photon-Added Gaussian States via the Intermediate State Representation Theory
Optical tomogram of a quantum state can serve as an alternative to its density matrix since it contains all the information on this state. In this paper we use the explicit expression of the intermediate state | q, f , g〉(that is, an eigenvector of the coordinate and momentum operator fQ + gP ) and...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2018-09, Vol.127 (3), p.383-390 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 390 |
---|---|
container_issue | 3 |
container_start_page | 383 |
container_title | Journal of experimental and theoretical physics |
container_volume | 127 |
creator | Meng, Xiang-Guo Wang, Ji-Suo Liang, Bao-Long Du, Chuan-Xun |
description | Optical tomogram of a quantum state can serve as an alternative to its density matrix since it contains all the information on this state. In this paper we use the explicit expression of the intermediate state |
q, f
, g〉(that is, an eigenvector of the coordinate and momentum operator
fQ
+
gP
) and the Radon transform between the Wigner operator Δ(p, q) and the pure-state density operator |
q, f, g
〉〈
q, f, g
| to calculate the specific tomograms for multiple-photon-added coherent states (MPACSs), thermal states (MPATSs) and displaced thermal states (MPADTSs). Their analytical tomograms are actually the finite-summation representations related to single-variable Hermite polynomials. Besides, the numerical results indicate that the larger photon-addition number can lead to the multi-peak tomographic distributions for these three states, and the measurable tomograms of MPACSs and MPADTSs exhibit π-periodic features but MPATSs can’t. |
doi_str_mv | 10.1134/S1063776118080113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22917906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2134382814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4362e1a1836103ed66f763318158d18704025734194fd509c3dd7cdc1047e9f63</originalsourceid><addsrcrecordid>eNp1UMtKBDEQHETB5wd4C3ge7Z5kM5mjiI8FRdH1PISkx43uJmOSFfx7s6ygIJ66u7qq6K6qOkY4ReTi7AlB8raViAoUFGir2kPooJYT6LbXveT1er9b7af0CgCqgW6versfszN6wWZhGV6iXiYWBna3WmQ3Lqh-mIccfH1uLVl2rVcpOe3ZU9aZEvtwmuU5sanPFJdkXUE3O_ZIY6REvgwueDabU4ifh9XOoBeJjr7rQfV8dTm7uKlv76-nF-e3teFC5Fpw2RBqVFwicLJSDq3kHBVOlEXVgoBm0nKBnRhs-c5wa1tjDYJoqRskP6hONr4hZdcn4zKZuQnek8l903TYdvCLNcbwvqKU-9ewir4c1jclUa4ahaKwcMMyMaQUaejH6JY6fvYI_Tr5_k_yRdNsNKlw_QvFH-f_RV9mCIOF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2134382814</pqid></control><display><type>article</type><title>Optical Tomograms of Multiple-Photon-Added Gaussian States via the Intermediate State Representation Theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>Meng, Xiang-Guo ; Wang, Ji-Suo ; Liang, Bao-Long ; Du, Chuan-Xun</creator><creatorcontrib>Meng, Xiang-Guo ; Wang, Ji-Suo ; Liang, Bao-Long ; Du, Chuan-Xun</creatorcontrib><description>Optical tomogram of a quantum state can serve as an alternative to its density matrix since it contains all the information on this state. In this paper we use the explicit expression of the intermediate state |
q, f
, g〉(that is, an eigenvector of the coordinate and momentum operator
fQ
+
gP
) and the Radon transform between the Wigner operator Δ(p, q) and the pure-state density operator |
q, f, g
〉〈
q, f, g
| to calculate the specific tomograms for multiple-photon-added coherent states (MPACSs), thermal states (MPATSs) and displaced thermal states (MPADTSs). Their analytical tomograms are actually the finite-summation representations related to single-variable Hermite polynomials. Besides, the numerical results indicate that the larger photon-addition number can lead to the multi-peak tomographic distributions for these three states, and the measurable tomograms of MPACSs and MPADTSs exhibit π-periodic features but MPATSs can’t.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776118080113</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>ANNIHILATION OPERATORS ; ATOMIC AND MOLECULAR PHYSICS ; Atoms ; Classical and Quantum Gravitation ; Density ; DENSITY MATRIX ; DISTRIBUTION ; EIGENSTATES ; EIGENVECTORS ; Elementary Particles ; HERMITE POLYNOMIALS ; INTERMEDIATE STATE ; Mathematical analysis ; Molecules ; Optics ; Particle and Nuclear Physics ; PERIODICITY ; Physics ; Physics and Astronomy ; PURE STATES ; Quantum Field Theory ; RADON ; Radon transformation ; Relativity Theory ; Representations ; Solid State Physics</subject><ispartof>Journal of experimental and theoretical physics, 2018-09, Vol.127 (3), p.383-390</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4362e1a1836103ed66f763318158d18704025734194fd509c3dd7cdc1047e9f63</citedby><cites>FETCH-LOGICAL-c344t-4362e1a1836103ed66f763318158d18704025734194fd509c3dd7cdc1047e9f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776118080113$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776118080113$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22917906$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Xiang-Guo</creatorcontrib><creatorcontrib>Wang, Ji-Suo</creatorcontrib><creatorcontrib>Liang, Bao-Long</creatorcontrib><creatorcontrib>Du, Chuan-Xun</creatorcontrib><title>Optical Tomograms of Multiple-Photon-Added Gaussian States via the Intermediate State Representation Theory</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>Optical tomogram of a quantum state can serve as an alternative to its density matrix since it contains all the information on this state. In this paper we use the explicit expression of the intermediate state |
q, f
, g〉(that is, an eigenvector of the coordinate and momentum operator
fQ
+
gP
) and the Radon transform between the Wigner operator Δ(p, q) and the pure-state density operator |
q, f, g
〉〈
q, f, g
| to calculate the specific tomograms for multiple-photon-added coherent states (MPACSs), thermal states (MPATSs) and displaced thermal states (MPADTSs). Their analytical tomograms are actually the finite-summation representations related to single-variable Hermite polynomials. Besides, the numerical results indicate that the larger photon-addition number can lead to the multi-peak tomographic distributions for these three states, and the measurable tomograms of MPACSs and MPADTSs exhibit π-periodic features but MPATSs can’t.</description><subject>ANNIHILATION OPERATORS</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Atoms</subject><subject>Classical and Quantum Gravitation</subject><subject>Density</subject><subject>DENSITY MATRIX</subject><subject>DISTRIBUTION</subject><subject>EIGENSTATES</subject><subject>EIGENVECTORS</subject><subject>Elementary Particles</subject><subject>HERMITE POLYNOMIALS</subject><subject>INTERMEDIATE STATE</subject><subject>Mathematical analysis</subject><subject>Molecules</subject><subject>Optics</subject><subject>Particle and Nuclear Physics</subject><subject>PERIODICITY</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PURE STATES</subject><subject>Quantum Field Theory</subject><subject>RADON</subject><subject>Radon transformation</subject><subject>Relativity Theory</subject><subject>Representations</subject><subject>Solid State Physics</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKBDEQHETB5wd4C3ge7Z5kM5mjiI8FRdH1PISkx43uJmOSFfx7s6ygIJ66u7qq6K6qOkY4ReTi7AlB8raViAoUFGir2kPooJYT6LbXveT1er9b7af0CgCqgW6versfszN6wWZhGV6iXiYWBna3WmQ3Lqh-mIccfH1uLVl2rVcpOe3ZU9aZEvtwmuU5sanPFJdkXUE3O_ZIY6REvgwueDabU4ifh9XOoBeJjr7rQfV8dTm7uKlv76-nF-e3teFC5Fpw2RBqVFwicLJSDq3kHBVOlEXVgoBm0nKBnRhs-c5wa1tjDYJoqRskP6hONr4hZdcn4zKZuQnek8l903TYdvCLNcbwvqKU-9ewir4c1jclUa4ahaKwcMMyMaQUaejH6JY6fvYI_Tr5_k_yRdNsNKlw_QvFH-f_RV9mCIOF</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Meng, Xiang-Guo</creator><creator>Wang, Ji-Suo</creator><creator>Liang, Bao-Long</creator><creator>Du, Chuan-Xun</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180901</creationdate><title>Optical Tomograms of Multiple-Photon-Added Gaussian States via the Intermediate State Representation Theory</title><author>Meng, Xiang-Guo ; Wang, Ji-Suo ; Liang, Bao-Long ; Du, Chuan-Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4362e1a1836103ed66f763318158d18704025734194fd509c3dd7cdc1047e9f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ANNIHILATION OPERATORS</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Atoms</topic><topic>Classical and Quantum Gravitation</topic><topic>Density</topic><topic>DENSITY MATRIX</topic><topic>DISTRIBUTION</topic><topic>EIGENSTATES</topic><topic>EIGENVECTORS</topic><topic>Elementary Particles</topic><topic>HERMITE POLYNOMIALS</topic><topic>INTERMEDIATE STATE</topic><topic>Mathematical analysis</topic><topic>Molecules</topic><topic>Optics</topic><topic>Particle and Nuclear Physics</topic><topic>PERIODICITY</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PURE STATES</topic><topic>Quantum Field Theory</topic><topic>RADON</topic><topic>Radon transformation</topic><topic>Relativity Theory</topic><topic>Representations</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xiang-Guo</creatorcontrib><creatorcontrib>Wang, Ji-Suo</creatorcontrib><creatorcontrib>Liang, Bao-Long</creatorcontrib><creatorcontrib>Du, Chuan-Xun</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xiang-Guo</au><au>Wang, Ji-Suo</au><au>Liang, Bao-Long</au><au>Du, Chuan-Xun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Tomograms of Multiple-Photon-Added Gaussian States via the Intermediate State Representation Theory</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>127</volume><issue>3</issue><spage>383</spage><epage>390</epage><pages>383-390</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>Optical tomogram of a quantum state can serve as an alternative to its density matrix since it contains all the information on this state. In this paper we use the explicit expression of the intermediate state |
q, f
, g〉(that is, an eigenvector of the coordinate and momentum operator
fQ
+
gP
) and the Radon transform between the Wigner operator Δ(p, q) and the pure-state density operator |
q, f, g
〉〈
q, f, g
| to calculate the specific tomograms for multiple-photon-added coherent states (MPACSs), thermal states (MPATSs) and displaced thermal states (MPADTSs). Their analytical tomograms are actually the finite-summation representations related to single-variable Hermite polynomials. Besides, the numerical results indicate that the larger photon-addition number can lead to the multi-peak tomographic distributions for these three states, and the measurable tomograms of MPACSs and MPADTSs exhibit π-periodic features but MPATSs can’t.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776118080113</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2018-09, Vol.127 (3), p.383-390 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_osti_scitechconnect_22917906 |
source | SpringerLink Journals - AutoHoldings |
subjects | ANNIHILATION OPERATORS ATOMIC AND MOLECULAR PHYSICS Atoms Classical and Quantum Gravitation Density DENSITY MATRIX DISTRIBUTION EIGENSTATES EIGENVECTORS Elementary Particles HERMITE POLYNOMIALS INTERMEDIATE STATE Mathematical analysis Molecules Optics Particle and Nuclear Physics PERIODICITY Physics Physics and Astronomy PURE STATES Quantum Field Theory RADON Radon transformation Relativity Theory Representations Solid State Physics |
title | Optical Tomograms of Multiple-Photon-Added Gaussian States via the Intermediate State Representation Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A24%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Tomograms%20of%20Multiple-Photon-Added%20Gaussian%20States%20via%20the%20Intermediate%20State%20Representation%20Theory&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Meng,%20Xiang-Guo&rft.date=2018-09-01&rft.volume=127&rft.issue=3&rft.spage=383&rft.epage=390&rft.pages=383-390&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776118080113&rft_dat=%3Cproquest_osti_%3E2134382814%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2134382814&rft_id=info:pmid/&rfr_iscdi=true |