Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices

We have considered the phase diagram of the ground state for the t – t ' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral t ' and in direct antiferromagnetic gap Δ. For a squa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental and theoretical physics 2019-06, Vol.128 (6), p.909-918
Hauptverfasser: Igoshev, P. A., Irkhin, V. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 918
container_issue 6
container_start_page 909
container_title Journal of experimental and theoretical physics
container_volume 128
creator Igoshev, P. A.
Irkhin, V. Yu
description We have considered the phase diagram of the ground state for the t – t ' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral t ' and in direct antiferromagnetic gap Δ. For a square lattice, there exists an interval of t ' values for which the metal–insulator transition is of the first order due to the existence of the Van Hove singularity. For simple and body-centered cubic lattices, a transition occurring from the insulator antiferromagnetic state to the antiferromagnetic metal phase is a second-order transition followed by a transition to paramagnetic metal.
doi_str_mv 10.1134/S106377611905011X
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22917728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595729894</galeid><sourcerecordid>A595729894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-cf0f040581d10342435e77c89f7f05b2445899bb602633a18e86d57dadbd27893</originalsourceid><addsrcrecordid>eNp1kcFqVDEUhoMoWEcfwF3AlYtbT3JvbpJlLWoHRiqdKm4kZHJPpinTZEwyojvfwTf0ScwwhVKkZHFCzved_HAIecngmLF-eLNkMPZSjoxpEMDY10fkiIGGbhSgH-_vY9_t-0_Js1KuAUBx0Efk20esdvP39595LLuNrSnTy2xjCTWkSEOk9Qrpp4wFo0OaPP1iIz1LP5AuQ1w3IzcSC_VNfBu2NtdQkS5srcFheU6eeLsp-OK2zsjn9-8uT8-6xfmH-enJonMDk7VzHjwMIBSbGPQDH3qBUjqlvfQgVnwYhNJ6tRqBj31vmUI1TkJOdlpNXCrdz8irw9xUajDFtQzuyqUY0VXDuWZScnVHbXP6vsNSzXXa5diCNWZUUjHdvp6R4wO1ths0IfpUs3XtTHgT2kz0ob2fCC0k10rvhdf3hMZU_FnXdleKmS8v7rPswLqcSsnozTaHG5t_GQZmv0jz3yKbww9OaWxcY76L_bD0DzY1nco</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268781924</pqid></control><display><type>article</type><title>Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices</title><source>SpringerLink Journals</source><creator>Igoshev, P. A. ; Irkhin, V. Yu</creator><creatorcontrib>Igoshev, P. A. ; Irkhin, V. Yu</creatorcontrib><description>We have considered the phase diagram of the ground state for the t – t ' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral t ' and in direct antiferromagnetic gap Δ. For a square lattice, there exists an interval of t ' values for which the metal–insulator transition is of the first order due to the existence of the Van Hove singularity. For simple and body-centered cubic lattices, a transition occurring from the insulator antiferromagnetic state to the antiferromagnetic metal phase is a second-order transition followed by a transition to paramagnetic metal.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S106377611905011X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>ANTIFERROMAGNETISM ; BCC LATTICES ; Body centered cubic lattice ; Classical and Quantum Gravitation ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DIELECTRIC MATERIALS ; Disorder ; Elementary Particles ; GROUND STATES ; HETEROJUNCTIONS ; HUBBARD MODEL ; Metal-insulator transition ; METALS ; Order ; PARAMAGNETISM ; Particle and Nuclear Physics ; PHASE DIAGRAMS ; Phase Transition in Condensed System ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Singularities ; SINGULARITY ; Solid State Physics ; TETRAGONAL LATTICES</subject><ispartof>Journal of experimental and theoretical physics, 2019-06, Vol.128 (6), p.909-918</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-cf0f040581d10342435e77c89f7f05b2445899bb602633a18e86d57dadbd27893</citedby><cites>FETCH-LOGICAL-c417t-cf0f040581d10342435e77c89f7f05b2445899bb602633a18e86d57dadbd27893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106377611905011X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106377611905011X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22917728$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Igoshev, P. A.</creatorcontrib><creatorcontrib>Irkhin, V. Yu</creatorcontrib><title>Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>We have considered the phase diagram of the ground state for the t – t ' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral t ' and in direct antiferromagnetic gap Δ. For a square lattice, there exists an interval of t ' values for which the metal–insulator transition is of the first order due to the existence of the Van Hove singularity. For simple and body-centered cubic lattices, a transition occurring from the insulator antiferromagnetic state to the antiferromagnetic metal phase is a second-order transition followed by a transition to paramagnetic metal.</description><subject>ANTIFERROMAGNETISM</subject><subject>BCC LATTICES</subject><subject>Body centered cubic lattice</subject><subject>Classical and Quantum Gravitation</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DIELECTRIC MATERIALS</subject><subject>Disorder</subject><subject>Elementary Particles</subject><subject>GROUND STATES</subject><subject>HETEROJUNCTIONS</subject><subject>HUBBARD MODEL</subject><subject>Metal-insulator transition</subject><subject>METALS</subject><subject>Order</subject><subject>PARAMAGNETISM</subject><subject>Particle and Nuclear Physics</subject><subject>PHASE DIAGRAMS</subject><subject>Phase Transition in Condensed System</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Singularities</subject><subject>SINGULARITY</subject><subject>Solid State Physics</subject><subject>TETRAGONAL LATTICES</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFqVDEUhoMoWEcfwF3AlYtbT3JvbpJlLWoHRiqdKm4kZHJPpinTZEwyojvfwTf0ScwwhVKkZHFCzved_HAIecngmLF-eLNkMPZSjoxpEMDY10fkiIGGbhSgH-_vY9_t-0_Js1KuAUBx0Efk20esdvP39595LLuNrSnTy2xjCTWkSEOk9Qrpp4wFo0OaPP1iIz1LP5AuQ1w3IzcSC_VNfBu2NtdQkS5srcFheU6eeLsp-OK2zsjn9-8uT8-6xfmH-enJonMDk7VzHjwMIBSbGPQDH3qBUjqlvfQgVnwYhNJ6tRqBj31vmUI1TkJOdlpNXCrdz8irw9xUajDFtQzuyqUY0VXDuWZScnVHbXP6vsNSzXXa5diCNWZUUjHdvp6R4wO1ths0IfpUs3XtTHgT2kz0ob2fCC0k10rvhdf3hMZU_FnXdleKmS8v7rPswLqcSsnozTaHG5t_GQZmv0jz3yKbww9OaWxcY76L_bD0DzY1nco</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Igoshev, P. A.</creator><creator>Irkhin, V. Yu</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20190601</creationdate><title>Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices</title><author>Igoshev, P. A. ; Irkhin, V. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-cf0f040581d10342435e77c89f7f05b2445899bb602633a18e86d57dadbd27893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ANTIFERROMAGNETISM</topic><topic>BCC LATTICES</topic><topic>Body centered cubic lattice</topic><topic>Classical and Quantum Gravitation</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DIELECTRIC MATERIALS</topic><topic>Disorder</topic><topic>Elementary Particles</topic><topic>GROUND STATES</topic><topic>HETEROJUNCTIONS</topic><topic>HUBBARD MODEL</topic><topic>Metal-insulator transition</topic><topic>METALS</topic><topic>Order</topic><topic>PARAMAGNETISM</topic><topic>Particle and Nuclear Physics</topic><topic>PHASE DIAGRAMS</topic><topic>Phase Transition in Condensed System</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Singularities</topic><topic>SINGULARITY</topic><topic>Solid State Physics</topic><topic>TETRAGONAL LATTICES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igoshev, P. A.</creatorcontrib><creatorcontrib>Irkhin, V. Yu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igoshev, P. A.</au><au>Irkhin, V. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>128</volume><issue>6</issue><spage>909</spage><epage>918</epage><pages>909-918</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>We have considered the phase diagram of the ground state for the t – t ' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral t ' and in direct antiferromagnetic gap Δ. For a square lattice, there exists an interval of t ' values for which the metal–insulator transition is of the first order due to the existence of the Van Hove singularity. For simple and body-centered cubic lattices, a transition occurring from the insulator antiferromagnetic state to the antiferromagnetic metal phase is a second-order transition followed by a transition to paramagnetic metal.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S106377611905011X</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2019-06, Vol.128 (6), p.909-918
issn 1063-7761
1090-6509
language eng
recordid cdi_osti_scitechconnect_22917728
source SpringerLink Journals
subjects ANTIFERROMAGNETISM
BCC LATTICES
Body centered cubic lattice
Classical and Quantum Gravitation
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DIELECTRIC MATERIALS
Disorder
Elementary Particles
GROUND STATES
HETEROJUNCTIONS
HUBBARD MODEL
Metal-insulator transition
METALS
Order
PARAMAGNETISM
Particle and Nuclear Physics
PHASE DIAGRAMS
Phase Transition in Condensed System
Phase transitions
Physics
Physics and Astronomy
Quantum Field Theory
Relativity Theory
Singularities
SINGULARITY
Solid State Physics
TETRAGONAL LATTICES
title Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Insulator%20Transition%20in%20the%20Presence%20of%20Van%20Hove%20Singularities%20for%20Bipartite%20Lattices&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Igoshev,%20P.%20A.&rft.date=2019-06-01&rft.volume=128&rft.issue=6&rft.spage=909&rft.epage=918&rft.pages=909-918&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S106377611905011X&rft_dat=%3Cgale_osti_%3EA595729894%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268781924&rft_id=info:pmid/&rft_galeid=A595729894&rfr_iscdi=true