Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices
We have considered the phase diagram of the ground state for the t – t ' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral t ' and in direct antiferromagnetic gap Δ. For a squa...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2019-06, Vol.128 (6), p.909-918 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 918 |
---|---|
container_issue | 6 |
container_start_page | 909 |
container_title | Journal of experimental and theoretical physics |
container_volume | 128 |
creator | Igoshev, P. A. Irkhin, V. Yu |
description | We have considered the phase diagram of the ground state for the
t
–
t
' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral
t
' and in direct antiferromagnetic gap Δ. For a square lattice, there exists an interval of
t
' values for which the metal–insulator transition is of the first order due to the existence of the Van Hove singularity. For simple and body-centered cubic lattices, a transition occurring from the insulator antiferromagnetic state to the antiferromagnetic metal phase is a second-order transition followed by a transition to paramagnetic metal. |
doi_str_mv | 10.1134/S106377611905011X |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22917728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595729894</galeid><sourcerecordid>A595729894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-cf0f040581d10342435e77c89f7f05b2445899bb602633a18e86d57dadbd27893</originalsourceid><addsrcrecordid>eNp1kcFqVDEUhoMoWEcfwF3AlYtbT3JvbpJlLWoHRiqdKm4kZHJPpinTZEwyojvfwTf0ScwwhVKkZHFCzved_HAIecngmLF-eLNkMPZSjoxpEMDY10fkiIGGbhSgH-_vY9_t-0_Js1KuAUBx0Efk20esdvP39595LLuNrSnTy2xjCTWkSEOk9Qrpp4wFo0OaPP1iIz1LP5AuQ1w3IzcSC_VNfBu2NtdQkS5srcFheU6eeLsp-OK2zsjn9-8uT8-6xfmH-enJonMDk7VzHjwMIBSbGPQDH3qBUjqlvfQgVnwYhNJ6tRqBj31vmUI1TkJOdlpNXCrdz8irw9xUajDFtQzuyqUY0VXDuWZScnVHbXP6vsNSzXXa5diCNWZUUjHdvp6R4wO1ths0IfpUs3XtTHgT2kz0ob2fCC0k10rvhdf3hMZU_FnXdleKmS8v7rPswLqcSsnozTaHG5t_GQZmv0jz3yKbww9OaWxcY76L_bD0DzY1nco</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268781924</pqid></control><display><type>article</type><title>Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices</title><source>SpringerLink Journals</source><creator>Igoshev, P. A. ; Irkhin, V. Yu</creator><creatorcontrib>Igoshev, P. A. ; Irkhin, V. Yu</creatorcontrib><description>We have considered the phase diagram of the ground state for the
t
–
t
' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral
t
' and in direct antiferromagnetic gap Δ. For a square lattice, there exists an interval of
t
' values for which the metal–insulator transition is of the first order due to the existence of the Van Hove singularity. For simple and body-centered cubic lattices, a transition occurring from the insulator antiferromagnetic state to the antiferromagnetic metal phase is a second-order transition followed by a transition to paramagnetic metal.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S106377611905011X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>ANTIFERROMAGNETISM ; BCC LATTICES ; Body centered cubic lattice ; Classical and Quantum Gravitation ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DIELECTRIC MATERIALS ; Disorder ; Elementary Particles ; GROUND STATES ; HETEROJUNCTIONS ; HUBBARD MODEL ; Metal-insulator transition ; METALS ; Order ; PARAMAGNETISM ; Particle and Nuclear Physics ; PHASE DIAGRAMS ; Phase Transition in Condensed System ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Singularities ; SINGULARITY ; Solid State Physics ; TETRAGONAL LATTICES</subject><ispartof>Journal of experimental and theoretical physics, 2019-06, Vol.128 (6), p.909-918</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-cf0f040581d10342435e77c89f7f05b2445899bb602633a18e86d57dadbd27893</citedby><cites>FETCH-LOGICAL-c417t-cf0f040581d10342435e77c89f7f05b2445899bb602633a18e86d57dadbd27893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106377611905011X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106377611905011X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22917728$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Igoshev, P. A.</creatorcontrib><creatorcontrib>Irkhin, V. Yu</creatorcontrib><title>Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>We have considered the phase diagram of the ground state for the
t
–
t
' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral
t
' and in direct antiferromagnetic gap Δ. For a square lattice, there exists an interval of
t
' values for which the metal–insulator transition is of the first order due to the existence of the Van Hove singularity. For simple and body-centered cubic lattices, a transition occurring from the insulator antiferromagnetic state to the antiferromagnetic metal phase is a second-order transition followed by a transition to paramagnetic metal.</description><subject>ANTIFERROMAGNETISM</subject><subject>BCC LATTICES</subject><subject>Body centered cubic lattice</subject><subject>Classical and Quantum Gravitation</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DIELECTRIC MATERIALS</subject><subject>Disorder</subject><subject>Elementary Particles</subject><subject>GROUND STATES</subject><subject>HETEROJUNCTIONS</subject><subject>HUBBARD MODEL</subject><subject>Metal-insulator transition</subject><subject>METALS</subject><subject>Order</subject><subject>PARAMAGNETISM</subject><subject>Particle and Nuclear Physics</subject><subject>PHASE DIAGRAMS</subject><subject>Phase Transition in Condensed System</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Singularities</subject><subject>SINGULARITY</subject><subject>Solid State Physics</subject><subject>TETRAGONAL LATTICES</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFqVDEUhoMoWEcfwF3AlYtbT3JvbpJlLWoHRiqdKm4kZHJPpinTZEwyojvfwTf0ScwwhVKkZHFCzved_HAIecngmLF-eLNkMPZSjoxpEMDY10fkiIGGbhSgH-_vY9_t-0_Js1KuAUBx0Efk20esdvP39595LLuNrSnTy2xjCTWkSEOk9Qrpp4wFo0OaPP1iIz1LP5AuQ1w3IzcSC_VNfBu2NtdQkS5srcFheU6eeLsp-OK2zsjn9-8uT8-6xfmH-enJonMDk7VzHjwMIBSbGPQDH3qBUjqlvfQgVnwYhNJ6tRqBj31vmUI1TkJOdlpNXCrdz8irw9xUajDFtQzuyqUY0VXDuWZScnVHbXP6vsNSzXXa5diCNWZUUjHdvp6R4wO1ths0IfpUs3XtTHgT2kz0ob2fCC0k10rvhdf3hMZU_FnXdleKmS8v7rPswLqcSsnozTaHG5t_GQZmv0jz3yKbww9OaWxcY76L_bD0DzY1nco</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Igoshev, P. A.</creator><creator>Irkhin, V. Yu</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20190601</creationdate><title>Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices</title><author>Igoshev, P. A. ; Irkhin, V. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-cf0f040581d10342435e77c89f7f05b2445899bb602633a18e86d57dadbd27893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ANTIFERROMAGNETISM</topic><topic>BCC LATTICES</topic><topic>Body centered cubic lattice</topic><topic>Classical and Quantum Gravitation</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DIELECTRIC MATERIALS</topic><topic>Disorder</topic><topic>Elementary Particles</topic><topic>GROUND STATES</topic><topic>HETEROJUNCTIONS</topic><topic>HUBBARD MODEL</topic><topic>Metal-insulator transition</topic><topic>METALS</topic><topic>Order</topic><topic>PARAMAGNETISM</topic><topic>Particle and Nuclear Physics</topic><topic>PHASE DIAGRAMS</topic><topic>Phase Transition in Condensed System</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Singularities</topic><topic>SINGULARITY</topic><topic>Solid State Physics</topic><topic>TETRAGONAL LATTICES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igoshev, P. A.</creatorcontrib><creatorcontrib>Irkhin, V. Yu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igoshev, P. A.</au><au>Irkhin, V. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>128</volume><issue>6</issue><spage>909</spage><epage>918</epage><pages>909-918</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>We have considered the phase diagram of the ground state for the
t
–
t
' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral
t
' and in direct antiferromagnetic gap Δ. For a square lattice, there exists an interval of
t
' values for which the metal–insulator transition is of the first order due to the existence of the Van Hove singularity. For simple and body-centered cubic lattices, a transition occurring from the insulator antiferromagnetic state to the antiferromagnetic metal phase is a second-order transition followed by a transition to paramagnetic metal.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S106377611905011X</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2019-06, Vol.128 (6), p.909-918 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_osti_scitechconnect_22917728 |
source | SpringerLink Journals |
subjects | ANTIFERROMAGNETISM BCC LATTICES Body centered cubic lattice Classical and Quantum Gravitation CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIELECTRIC MATERIALS Disorder Elementary Particles GROUND STATES HETEROJUNCTIONS HUBBARD MODEL Metal-insulator transition METALS Order PARAMAGNETISM Particle and Nuclear Physics PHASE DIAGRAMS Phase Transition in Condensed System Phase transitions Physics Physics and Astronomy Quantum Field Theory Relativity Theory Singularities SINGULARITY Solid State Physics TETRAGONAL LATTICES |
title | Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Insulator%20Transition%20in%20the%20Presence%20of%20Van%20Hove%20Singularities%20for%20Bipartite%20Lattices&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Igoshev,%20P.%20A.&rft.date=2019-06-01&rft.volume=128&rft.issue=6&rft.spage=909&rft.epage=918&rft.pages=909-918&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S106377611905011X&rft_dat=%3Cgale_osti_%3EA595729894%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268781924&rft_id=info:pmid/&rft_galeid=A595729894&rfr_iscdi=true |