Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation

Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental and theoretical physics 2019-07, Vol.129 (1), p.103-111
Hauptverfasser: Antropov, A. S., Ozrin, V. D., Stegailov, V. V., Tarasov, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue 1
container_start_page 103
container_title Journal of experimental and theoretical physics
container_volume 129
creator Antropov, A. S.
Ozrin, V. D.
Stegailov, V. V.
Tarasov, V. I.
description Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-size cavities in the crystal lattice is described only in terms of continuous-medium approximation. This paper attempts to link the existing theory of diffusion of bubbles in a crystalline matrix with the atomistic description of the process on the basis of the molecular dynamics method. For simplicity, the diffusion of cavities in a two-dimensional Lennard-Jones lattice is considered. A controlled molecular dynamics method is proposed to speed up the direct computation of the diffusion rate of bubbles. Based on the results of simulation, a practical interpretation is given to a parameter of the continuum theory such as the rate of surface self-diffusion. The applicability range of the continuum theory is demonstrated, and principles for the refinement of the theory in the case of minimum-size bubbles are formulated.
doi_str_mv 10.1134/S1063776119060098
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22917709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597645105</galeid><sourcerecordid>A597645105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-c34fd712481ccff0785db7ff30fe0c92e74a51b81e35207b834d9ac034222d0e3</originalsourceid><addsrcrecordid>eNp10U1r3DAQBmBTWmia9gf0JuipByejD1tWb9ukTQMJgTg9G1ke7WrxWltJpt1_X21cCKEEHSSk5x0NTFF8pHBGKRfnLYWaS1lTqqAGUM2r4oSCgrKuQL0-nmteHt_fFu9i3AJAw0CdFNt7HHVyfoobtyc9pt-IE2nnYLVB0uJoy0tn7RwzIXoayNe570ckt753o0sH4rL2oxviF_KwQR8Oj2qV_M7F5Axp3W5efnhfvLF6jPjh335a_Pz-7eHiR3lzd3V9sbopjaAylYYLO0jKREONsRZkUw29tJaDRTCKoRS6on1DkVcMZN9wMShtgAvG2ADIT4tPS12fG-iicQnNxvhpQpM6xhSVEtST2gf_a8aYuq2fw5Qby6ahjAoAltXZotZ6xM5N1qegTV4D7lyuidbl-1WlZC0qClUOfH4WyCbhn7TWc4zddXv_3NLFmuBjDGi7fXA7HQ4dhe441e6_qeYMWzIx22mN4antl0N_Aarfodw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281214002</pqid></control><display><type>article</type><title>Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation</title><source>SpringerNature Journals</source><creator>Antropov, A. S. ; Ozrin, V. D. ; Stegailov, V. V. ; Tarasov, V. I.</creator><creatorcontrib>Antropov, A. S. ; Ozrin, V. D. ; Stegailov, V. V. ; Tarasov, V. I.</creatorcontrib><description>Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-size cavities in the crystal lattice is described only in terms of continuous-medium approximation. This paper attempts to link the existing theory of diffusion of bubbles in a crystalline matrix with the atomistic description of the process on the basis of the molecular dynamics method. For simplicity, the diffusion of cavities in a two-dimensional Lennard-Jones lattice is considered. A controlled molecular dynamics method is proposed to speed up the direct computation of the diffusion rate of bubbles. Based on the results of simulation, a practical interpretation is given to a parameter of the continuum theory such as the rate of surface self-diffusion. The applicability range of the continuum theory is demonstrated, and principles for the refinement of the theory in the case of minimum-size bubbles are formulated.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776119060098</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; BUBBLES ; Classical and Quantum Gravitation ; Computer simulation ; COMPUTERIZED SIMULATION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystal defects ; Crystal lattices ; Diffusion rate ; Disorder ; Elementary Particles ; Lattice vacancies ; MOBILITY ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; Nuclear energy ; Order ; Particle and Nuclear Physics ; Phase Transition in Condensed System ; Physics ; Physics and Astronomy ; POINT DEFECTS ; Quantum Field Theory ; Relativity Theory ; SELF-DIFFUSION ; Solid State Physics ; SOLIDS ; Theory ; TWO-DIMENSIONAL SYSTEMS</subject><ispartof>Journal of experimental and theoretical physics, 2019-07, Vol.129 (1), p.103-111</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-c34fd712481ccff0785db7ff30fe0c92e74a51b81e35207b834d9ac034222d0e3</citedby><cites>FETCH-LOGICAL-c417t-c34fd712481ccff0785db7ff30fe0c92e74a51b81e35207b834d9ac034222d0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776119060098$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776119060098$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22917709$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Antropov, A. S.</creatorcontrib><creatorcontrib>Ozrin, V. D.</creatorcontrib><creatorcontrib>Stegailov, V. V.</creatorcontrib><creatorcontrib>Tarasov, V. I.</creatorcontrib><title>Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-size cavities in the crystal lattice is described only in terms of continuous-medium approximation. This paper attempts to link the existing theory of diffusion of bubbles in a crystalline matrix with the atomistic description of the process on the basis of the molecular dynamics method. For simplicity, the diffusion of cavities in a two-dimensional Lennard-Jones lattice is considered. A controlled molecular dynamics method is proposed to speed up the direct computation of the diffusion rate of bubbles. Based on the results of simulation, a practical interpretation is given to a parameter of the continuum theory such as the rate of surface self-diffusion. The applicability range of the continuum theory is demonstrated, and principles for the refinement of the theory in the case of minimum-size bubbles are formulated.</description><subject>Analysis</subject><subject>BUBBLES</subject><subject>Classical and Quantum Gravitation</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Diffusion rate</subject><subject>Disorder</subject><subject>Elementary Particles</subject><subject>Lattice vacancies</subject><subject>MOBILITY</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Nuclear energy</subject><subject>Order</subject><subject>Particle and Nuclear Physics</subject><subject>Phase Transition in Condensed System</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>POINT DEFECTS</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>SELF-DIFFUSION</subject><subject>Solid State Physics</subject><subject>SOLIDS</subject><subject>Theory</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10U1r3DAQBmBTWmia9gf0JuipByejD1tWb9ukTQMJgTg9G1ke7WrxWltJpt1_X21cCKEEHSSk5x0NTFF8pHBGKRfnLYWaS1lTqqAGUM2r4oSCgrKuQL0-nmteHt_fFu9i3AJAw0CdFNt7HHVyfoobtyc9pt-IE2nnYLVB0uJoy0tn7RwzIXoayNe570ckt753o0sH4rL2oxviF_KwQR8Oj2qV_M7F5Axp3W5efnhfvLF6jPjh335a_Pz-7eHiR3lzd3V9sbopjaAylYYLO0jKREONsRZkUw29tJaDRTCKoRS6on1DkVcMZN9wMShtgAvG2ADIT4tPS12fG-iicQnNxvhpQpM6xhSVEtST2gf_a8aYuq2fw5Qby6ahjAoAltXZotZ6xM5N1qegTV4D7lyuidbl-1WlZC0qClUOfH4WyCbhn7TWc4zddXv_3NLFmuBjDGi7fXA7HQ4dhe441e6_qeYMWzIx22mN4antl0N_Aarfodw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Antropov, A. S.</creator><creator>Ozrin, V. D.</creator><creator>Stegailov, V. V.</creator><creator>Tarasov, V. I.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20190701</creationdate><title>Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation</title><author>Antropov, A. S. ; Ozrin, V. D. ; Stegailov, V. V. ; Tarasov, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-c34fd712481ccff0785db7ff30fe0c92e74a51b81e35207b834d9ac034222d0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>BUBBLES</topic><topic>Classical and Quantum Gravitation</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Diffusion rate</topic><topic>Disorder</topic><topic>Elementary Particles</topic><topic>Lattice vacancies</topic><topic>MOBILITY</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Nuclear energy</topic><topic>Order</topic><topic>Particle and Nuclear Physics</topic><topic>Phase Transition in Condensed System</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>POINT DEFECTS</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>SELF-DIFFUSION</topic><topic>Solid State Physics</topic><topic>SOLIDS</topic><topic>Theory</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antropov, A. S.</creatorcontrib><creatorcontrib>Ozrin, V. D.</creatorcontrib><creatorcontrib>Stegailov, V. V.</creatorcontrib><creatorcontrib>Tarasov, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antropov, A. S.</au><au>Ozrin, V. D.</au><au>Stegailov, V. V.</au><au>Tarasov, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>129</volume><issue>1</issue><spage>103</spage><epage>111</epage><pages>103-111</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-size cavities in the crystal lattice is described only in terms of continuous-medium approximation. This paper attempts to link the existing theory of diffusion of bubbles in a crystalline matrix with the atomistic description of the process on the basis of the molecular dynamics method. For simplicity, the diffusion of cavities in a two-dimensional Lennard-Jones lattice is considered. A controlled molecular dynamics method is proposed to speed up the direct computation of the diffusion rate of bubbles. Based on the results of simulation, a practical interpretation is given to a parameter of the continuum theory such as the rate of surface self-diffusion. The applicability range of the continuum theory is demonstrated, and principles for the refinement of the theory in the case of minimum-size bubbles are formulated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776119060098</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2019-07, Vol.129 (1), p.103-111
issn 1063-7761
1090-6509
language eng
recordid cdi_osti_scitechconnect_22917709
source SpringerNature Journals
subjects Analysis
BUBBLES
Classical and Quantum Gravitation
Computer simulation
COMPUTERIZED SIMULATION
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Crystal defects
Crystal lattices
Diffusion rate
Disorder
Elementary Particles
Lattice vacancies
MOBILITY
Molecular dynamics
MOLECULAR DYNAMICS METHOD
Nuclear energy
Order
Particle and Nuclear Physics
Phase Transition in Condensed System
Physics
Physics and Astronomy
POINT DEFECTS
Quantum Field Theory
Relativity Theory
SELF-DIFFUSION
Solid State Physics
SOLIDS
Theory
TWO-DIMENSIONAL SYSTEMS
title Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20Surface%20Self-Diffusion%20and%20Bubble%20Mobility%20in%20Solids:%20Theory%20and%20Atomistic%20Simulation&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Antropov,%20A.%20S.&rft.date=2019-07-01&rft.volume=129&rft.issue=1&rft.spage=103&rft.epage=111&rft.pages=103-111&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776119060098&rft_dat=%3Cgale_osti_%3EA597645105%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281214002&rft_id=info:pmid/&rft_galeid=A597645105&rfr_iscdi=true