Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation
Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-si...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2019-07, Vol.129 (1), p.103-111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 1 |
container_start_page | 103 |
container_title | Journal of experimental and theoretical physics |
container_volume | 129 |
creator | Antropov, A. S. Ozrin, V. D. Stegailov, V. V. Tarasov, V. I. |
description | Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-size cavities in the crystal lattice is described only in terms of continuous-medium approximation. This paper attempts to link the existing theory of diffusion of bubbles in a crystalline matrix with the atomistic description of the process on the basis of the molecular dynamics method. For simplicity, the diffusion of cavities in a two-dimensional Lennard-Jones lattice is considered. A controlled molecular dynamics method is proposed to speed up the direct computation of the diffusion rate of bubbles. Based on the results of simulation, a practical interpretation is given to a parameter of the continuum theory such as the rate of surface self-diffusion. The applicability range of the continuum theory is demonstrated, and principles for the refinement of the theory in the case of minimum-size bubbles are formulated. |
doi_str_mv | 10.1134/S1063776119060098 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22917709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597645105</galeid><sourcerecordid>A597645105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-c34fd712481ccff0785db7ff30fe0c92e74a51b81e35207b834d9ac034222d0e3</originalsourceid><addsrcrecordid>eNp10U1r3DAQBmBTWmia9gf0JuipByejD1tWb9ukTQMJgTg9G1ke7WrxWltJpt1_X21cCKEEHSSk5x0NTFF8pHBGKRfnLYWaS1lTqqAGUM2r4oSCgrKuQL0-nmteHt_fFu9i3AJAw0CdFNt7HHVyfoobtyc9pt-IE2nnYLVB0uJoy0tn7RwzIXoayNe570ckt753o0sH4rL2oxviF_KwQR8Oj2qV_M7F5Axp3W5efnhfvLF6jPjh335a_Pz-7eHiR3lzd3V9sbopjaAylYYLO0jKREONsRZkUw29tJaDRTCKoRS6on1DkVcMZN9wMShtgAvG2ADIT4tPS12fG-iicQnNxvhpQpM6xhSVEtST2gf_a8aYuq2fw5Qby6ahjAoAltXZotZ6xM5N1qegTV4D7lyuidbl-1WlZC0qClUOfH4WyCbhn7TWc4zddXv_3NLFmuBjDGi7fXA7HQ4dhe441e6_qeYMWzIx22mN4antl0N_Aarfodw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281214002</pqid></control><display><type>article</type><title>Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation</title><source>SpringerNature Journals</source><creator>Antropov, A. S. ; Ozrin, V. D. ; Stegailov, V. V. ; Tarasov, V. I.</creator><creatorcontrib>Antropov, A. S. ; Ozrin, V. D. ; Stegailov, V. V. ; Tarasov, V. I.</creatorcontrib><description>Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-size cavities in the crystal lattice is described only in terms of continuous-medium approximation. This paper attempts to link the existing theory of diffusion of bubbles in a crystalline matrix with the atomistic description of the process on the basis of the molecular dynamics method. For simplicity, the diffusion of cavities in a two-dimensional Lennard-Jones lattice is considered. A controlled molecular dynamics method is proposed to speed up the direct computation of the diffusion rate of bubbles. Based on the results of simulation, a practical interpretation is given to a parameter of the continuum theory such as the rate of surface self-diffusion. The applicability range of the continuum theory is demonstrated, and principles for the refinement of the theory in the case of minimum-size bubbles are formulated.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776119060098</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; BUBBLES ; Classical and Quantum Gravitation ; Computer simulation ; COMPUTERIZED SIMULATION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystal defects ; Crystal lattices ; Diffusion rate ; Disorder ; Elementary Particles ; Lattice vacancies ; MOBILITY ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; Nuclear energy ; Order ; Particle and Nuclear Physics ; Phase Transition in Condensed System ; Physics ; Physics and Astronomy ; POINT DEFECTS ; Quantum Field Theory ; Relativity Theory ; SELF-DIFFUSION ; Solid State Physics ; SOLIDS ; Theory ; TWO-DIMENSIONAL SYSTEMS</subject><ispartof>Journal of experimental and theoretical physics, 2019-07, Vol.129 (1), p.103-111</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-c34fd712481ccff0785db7ff30fe0c92e74a51b81e35207b834d9ac034222d0e3</citedby><cites>FETCH-LOGICAL-c417t-c34fd712481ccff0785db7ff30fe0c92e74a51b81e35207b834d9ac034222d0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776119060098$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776119060098$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22917709$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Antropov, A. S.</creatorcontrib><creatorcontrib>Ozrin, V. D.</creatorcontrib><creatorcontrib>Stegailov, V. V.</creatorcontrib><creatorcontrib>Tarasov, V. I.</creatorcontrib><title>Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-size cavities in the crystal lattice is described only in terms of continuous-medium approximation. This paper attempts to link the existing theory of diffusion of bubbles in a crystalline matrix with the atomistic description of the process on the basis of the molecular dynamics method. For simplicity, the diffusion of cavities in a two-dimensional Lennard-Jones lattice is considered. A controlled molecular dynamics method is proposed to speed up the direct computation of the diffusion rate of bubbles. Based on the results of simulation, a practical interpretation is given to a parameter of the continuum theory such as the rate of surface self-diffusion. The applicability range of the continuum theory is demonstrated, and principles for the refinement of the theory in the case of minimum-size bubbles are formulated.</description><subject>Analysis</subject><subject>BUBBLES</subject><subject>Classical and Quantum Gravitation</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Diffusion rate</subject><subject>Disorder</subject><subject>Elementary Particles</subject><subject>Lattice vacancies</subject><subject>MOBILITY</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Nuclear energy</subject><subject>Order</subject><subject>Particle and Nuclear Physics</subject><subject>Phase Transition in Condensed System</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>POINT DEFECTS</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>SELF-DIFFUSION</subject><subject>Solid State Physics</subject><subject>SOLIDS</subject><subject>Theory</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10U1r3DAQBmBTWmia9gf0JuipByejD1tWb9ukTQMJgTg9G1ke7WrxWltJpt1_X21cCKEEHSSk5x0NTFF8pHBGKRfnLYWaS1lTqqAGUM2r4oSCgrKuQL0-nmteHt_fFu9i3AJAw0CdFNt7HHVyfoobtyc9pt-IE2nnYLVB0uJoy0tn7RwzIXoayNe570ckt753o0sH4rL2oxviF_KwQR8Oj2qV_M7F5Axp3W5efnhfvLF6jPjh335a_Pz-7eHiR3lzd3V9sbopjaAylYYLO0jKREONsRZkUw29tJaDRTCKoRS6on1DkVcMZN9wMShtgAvG2ADIT4tPS12fG-iicQnNxvhpQpM6xhSVEtST2gf_a8aYuq2fw5Qby6ahjAoAltXZotZ6xM5N1qegTV4D7lyuidbl-1WlZC0qClUOfH4WyCbhn7TWc4zddXv_3NLFmuBjDGi7fXA7HQ4dhe441e6_qeYMWzIx22mN4antl0N_Aarfodw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Antropov, A. S.</creator><creator>Ozrin, V. D.</creator><creator>Stegailov, V. V.</creator><creator>Tarasov, V. I.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20190701</creationdate><title>Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation</title><author>Antropov, A. S. ; Ozrin, V. D. ; Stegailov, V. V. ; Tarasov, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-c34fd712481ccff0785db7ff30fe0c92e74a51b81e35207b834d9ac034222d0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>BUBBLES</topic><topic>Classical and Quantum Gravitation</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Diffusion rate</topic><topic>Disorder</topic><topic>Elementary Particles</topic><topic>Lattice vacancies</topic><topic>MOBILITY</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Nuclear energy</topic><topic>Order</topic><topic>Particle and Nuclear Physics</topic><topic>Phase Transition in Condensed System</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>POINT DEFECTS</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>SELF-DIFFUSION</topic><topic>Solid State Physics</topic><topic>SOLIDS</topic><topic>Theory</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antropov, A. S.</creatorcontrib><creatorcontrib>Ozrin, V. D.</creatorcontrib><creatorcontrib>Stegailov, V. V.</creatorcontrib><creatorcontrib>Tarasov, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antropov, A. S.</au><au>Ozrin, V. D.</au><au>Stegailov, V. V.</au><au>Tarasov, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>129</volume><issue>1</issue><spage>103</spage><epage>111</epage><pages>103-111</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-size cavities in the crystal lattice is described only in terms of continuous-medium approximation. This paper attempts to link the existing theory of diffusion of bubbles in a crystalline matrix with the atomistic description of the process on the basis of the molecular dynamics method. For simplicity, the diffusion of cavities in a two-dimensional Lennard-Jones lattice is considered. A controlled molecular dynamics method is proposed to speed up the direct computation of the diffusion rate of bubbles. Based on the results of simulation, a practical interpretation is given to a parameter of the continuum theory such as the rate of surface self-diffusion. The applicability range of the continuum theory is demonstrated, and principles for the refinement of the theory in the case of minimum-size bubbles are formulated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776119060098</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2019-07, Vol.129 (1), p.103-111 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_osti_scitechconnect_22917709 |
source | SpringerNature Journals |
subjects | Analysis BUBBLES Classical and Quantum Gravitation Computer simulation COMPUTERIZED SIMULATION CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Crystal defects Crystal lattices Diffusion rate Disorder Elementary Particles Lattice vacancies MOBILITY Molecular dynamics MOLECULAR DYNAMICS METHOD Nuclear energy Order Particle and Nuclear Physics Phase Transition in Condensed System Physics Physics and Astronomy POINT DEFECTS Quantum Field Theory Relativity Theory SELF-DIFFUSION Solid State Physics SOLIDS Theory TWO-DIMENSIONAL SYSTEMS |
title | Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20Surface%20Self-Diffusion%20and%20Bubble%20Mobility%20in%20Solids:%20Theory%20and%20Atomistic%20Simulation&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Antropov,%20A.%20S.&rft.date=2019-07-01&rft.volume=129&rft.issue=1&rft.spage=103&rft.epage=111&rft.pages=103-111&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776119060098&rft_dat=%3Cgale_osti_%3EA597645105%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281214002&rft_id=info:pmid/&rft_galeid=A597645105&rfr_iscdi=true |