ANISOTROPY OF THIRD-ORDER STRUCTURE FUNCTIONS IN MHD TURBULENCE

ABSTRACT The measure of the third-order structure function, , is employed in the solar wind to compute the cascade rate of turbulence. In the absence of a mean field , is expected to be isotropic (radial) and independent of the direction of increments, so its measure yields directly the cascade rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2015-05, Vol.804 (2), p.1-13
Hauptverfasser: Verdini, Andrea, Grappin, Roland, Hellinger, Petr, Landi, Simone, Müller, Wolf Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2
container_start_page 1
container_title The Astrophysical journal
container_volume 804
creator Verdini, Andrea
Grappin, Roland
Hellinger, Petr
Landi, Simone
Müller, Wolf Christian
description ABSTRACT The measure of the third-order structure function, , is employed in the solar wind to compute the cascade rate of turbulence. In the absence of a mean field , is expected to be isotropic (radial) and independent of the direction of increments, so its measure yields directly the cascade rate. For turbulence with mean field, as in the solar wind, is expected to become more two-dimensional (2D), that is, to have larger perpendicular components, losing the above simple symmetry. To get the cascade rate, one should compute the flux of , which is not feasible with single-spacecraft data; thus, measurements rely on assumptions about the unknown symmetry. We use direct numerical simulations (DNSs) of magnetohydrodynamic (MHD) turbulence to characterize the anisotropy of . We find that for strong guide field the degree of two-dimensionalization depends on the relative importance of shear-Alfvén and pseudo-Alfvén polarizations (the two components of an Alfvén mode in incompressible MHD). The anisotropy also shows up in the inertial range. The more is 2D, the more the inertial range extent differs along parallel and perpendicular directions. We finally test the two methods employed in observations and find that the so-obtained cascade rate may depend on the angle between B0 and the direction of increments. Both methods yield a vanishing cascade rate along the parallel direction, contrary to observations, suggesting a weaker anisotropy of solar wind turbulence compared to our DNSs. This could be due to a weaker mean field and/or to solar wind expansion.
doi_str_mv 10.1088/0004-637X/804/2/119
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22883219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727683748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-5f3c8c2231c111ff46a38a07ac541c43e8476cad22fbc0b8321bdb9251dbbed73</originalsourceid><addsrcrecordid>eNqNkUFr4zAQhUXZQrNpf0Evhr3sHrzWSFYkn5as46wNqV0cG7onISsydUnj1HIW9t_XrkuOpadhhu8Nj_cQugX8E7AQHsbYdxeUP3gC-x7xAIILNANGhetTxr-g2Zm4Ql-tfRpXEgQz9GuZJtusyLP7v062doo4yVdulq-i3NkWeRkWZR456zINiyRLt06SOnfxyhmuv8tNlIbRNbqs1d6am_c5R-U6KsLY3WR_knC5cTUjondZTbXQhFDQAFDX_kJRoTBXmvmgfWqEzxda7QipK40rQQlUuyogDHZVZXacztG36W9r-0Za3fRGP-r2cDC6l4SIUREM1I-JelR7eeyaZ9X9l61qZLzcyPGGgTGCMfsHA_t9Yo9d-3IytpfPjdVmv1cH056sBM4xZXTw9QmU8IWg3BcDSidUd621nanPNgDLsSs5Ri_HJuTQlSQS3nx7k6ppj_KpPXWHIcsPFa_MI4z0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1727683748</pqid></control><display><type>article</type><title>ANISOTROPY OF THIRD-ORDER STRUCTURE FUNCTIONS IN MHD TURBULENCE</title><source>IOP Publishing Free Content</source><creator>Verdini, Andrea ; Grappin, Roland ; Hellinger, Petr ; Landi, Simone ; Müller, Wolf Christian</creator><creatorcontrib>Verdini, Andrea ; Grappin, Roland ; Hellinger, Petr ; Landi, Simone ; Müller, Wolf Christian</creatorcontrib><description>ABSTRACT The measure of the third-order structure function, , is employed in the solar wind to compute the cascade rate of turbulence. In the absence of a mean field , is expected to be isotropic (radial) and independent of the direction of increments, so its measure yields directly the cascade rate. For turbulence with mean field, as in the solar wind, is expected to become more two-dimensional (2D), that is, to have larger perpendicular components, losing the above simple symmetry. To get the cascade rate, one should compute the flux of , which is not feasible with single-spacecraft data; thus, measurements rely on assumptions about the unknown symmetry. We use direct numerical simulations (DNSs) of magnetohydrodynamic (MHD) turbulence to characterize the anisotropy of . We find that for strong guide field the degree of two-dimensionalization depends on the relative importance of shear-Alfvén and pseudo-Alfvén polarizations (the two components of an Alfvén mode in incompressible MHD). The anisotropy also shows up in the inertial range. The more is 2D, the more the inertial range extent differs along parallel and perpendicular directions. We finally test the two methods employed in observations and find that the so-obtained cascade rate may depend on the angle between B0 and the direction of increments. Both methods yield a vanishing cascade rate along the parallel direction, contrary to observations, suggesting a weaker anisotropy of solar wind turbulence compared to our DNSs. This could be due to a weaker mean field and/or to solar wind expansion.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/804/2/119</identifier><language>eng</language><publisher>United Kingdom: The American Astronomical Society</publisher><subject>ANISOTROPY ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Cascades ; COMPARATIVE EVALUATIONS ; Computational fluid dynamics ; COMPUTERIZED SIMULATION ; Fluid flow ; Magnetohydrodynamic turbulence ; MAGNETOHYDRODYNAMICS ; magnetohydrodynamics (MHD) ; MANY-DIMENSIONAL CALCULATIONS ; MATHEMATICAL METHODS AND COMPUTING ; MEAN-FIELD THEORY ; Physics ; Plasma Physics ; POLARIZATION ; SOLAR WIND ; STRUCTURE FUNCTIONS ; SYMMETRY ; TURBULENCE ; Turbulent flow ; Two dimensional</subject><ispartof>The Astrophysical journal, 2015-05, Vol.804 (2), p.1-13</ispartof><rights>2015. The American Astronomical Society. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-5f3c8c2231c111ff46a38a07ac541c43e8476cad22fbc0b8321bdb9251dbbed73</citedby><cites>FETCH-LOGICAL-c528t-5f3c8c2231c111ff46a38a07ac541c43e8476cad22fbc0b8321bdb9251dbbed73</cites><orcidid>0000-0002-1322-8712 ; 0000-0002-5608-0834 ; 0000-0001-7847-3586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/804/2/119/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/804/2/119$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-01552005$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22883219$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Verdini, Andrea</creatorcontrib><creatorcontrib>Grappin, Roland</creatorcontrib><creatorcontrib>Hellinger, Petr</creatorcontrib><creatorcontrib>Landi, Simone</creatorcontrib><creatorcontrib>Müller, Wolf Christian</creatorcontrib><title>ANISOTROPY OF THIRD-ORDER STRUCTURE FUNCTIONS IN MHD TURBULENCE</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT The measure of the third-order structure function, , is employed in the solar wind to compute the cascade rate of turbulence. In the absence of a mean field , is expected to be isotropic (radial) and independent of the direction of increments, so its measure yields directly the cascade rate. For turbulence with mean field, as in the solar wind, is expected to become more two-dimensional (2D), that is, to have larger perpendicular components, losing the above simple symmetry. To get the cascade rate, one should compute the flux of , which is not feasible with single-spacecraft data; thus, measurements rely on assumptions about the unknown symmetry. We use direct numerical simulations (DNSs) of magnetohydrodynamic (MHD) turbulence to characterize the anisotropy of . We find that for strong guide field the degree of two-dimensionalization depends on the relative importance of shear-Alfvén and pseudo-Alfvén polarizations (the two components of an Alfvén mode in incompressible MHD). The anisotropy also shows up in the inertial range. The more is 2D, the more the inertial range extent differs along parallel and perpendicular directions. We finally test the two methods employed in observations and find that the so-obtained cascade rate may depend on the angle between B0 and the direction of increments. Both methods yield a vanishing cascade rate along the parallel direction, contrary to observations, suggesting a weaker anisotropy of solar wind turbulence compared to our DNSs. This could be due to a weaker mean field and/or to solar wind expansion.</description><subject>ANISOTROPY</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Cascades</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computational fluid dynamics</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Fluid flow</subject><subject>Magnetohydrodynamic turbulence</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>magnetohydrodynamics (MHD)</subject><subject>MANY-DIMENSIONAL CALCULATIONS</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MEAN-FIELD THEORY</subject><subject>Physics</subject><subject>Plasma Physics</subject><subject>POLARIZATION</subject><subject>SOLAR WIND</subject><subject>STRUCTURE FUNCTIONS</subject><subject>SYMMETRY</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><subject>Two dimensional</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUFr4zAQhUXZQrNpf0Evhr3sHrzWSFYkn5as46wNqV0cG7onISsydUnj1HIW9t_XrkuOpadhhu8Nj_cQugX8E7AQHsbYdxeUP3gC-x7xAIILNANGhetTxr-g2Zm4Ql-tfRpXEgQz9GuZJtusyLP7v062doo4yVdulq-i3NkWeRkWZR456zINiyRLt06SOnfxyhmuv8tNlIbRNbqs1d6am_c5R-U6KsLY3WR_knC5cTUjondZTbXQhFDQAFDX_kJRoTBXmvmgfWqEzxda7QipK40rQQlUuyogDHZVZXacztG36W9r-0Za3fRGP-r2cDC6l4SIUREM1I-JelR7eeyaZ9X9l61qZLzcyPGGgTGCMfsHA_t9Yo9d-3IytpfPjdVmv1cH056sBM4xZXTw9QmU8IWg3BcDSidUd621nanPNgDLsSs5Ri_HJuTQlSQS3nx7k6ppj_KpPXWHIcsPFa_MI4z0</recordid><startdate>20150510</startdate><enddate>20150510</enddate><creator>Verdini, Andrea</creator><creator>Grappin, Roland</creator><creator>Hellinger, Petr</creator><creator>Landi, Simone</creator><creator>Müller, Wolf Christian</creator><general>The American Astronomical Society</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1322-8712</orcidid><orcidid>https://orcid.org/0000-0002-5608-0834</orcidid><orcidid>https://orcid.org/0000-0001-7847-3586</orcidid></search><sort><creationdate>20150510</creationdate><title>ANISOTROPY OF THIRD-ORDER STRUCTURE FUNCTIONS IN MHD TURBULENCE</title><author>Verdini, Andrea ; Grappin, Roland ; Hellinger, Petr ; Landi, Simone ; Müller, Wolf Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-5f3c8c2231c111ff46a38a07ac541c43e8476cad22fbc0b8321bdb9251dbbed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ANISOTROPY</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Cascades</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computational fluid dynamics</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Fluid flow</topic><topic>Magnetohydrodynamic turbulence</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>magnetohydrodynamics (MHD)</topic><topic>MANY-DIMENSIONAL CALCULATIONS</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MEAN-FIELD THEORY</topic><topic>Physics</topic><topic>Plasma Physics</topic><topic>POLARIZATION</topic><topic>SOLAR WIND</topic><topic>STRUCTURE FUNCTIONS</topic><topic>SYMMETRY</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verdini, Andrea</creatorcontrib><creatorcontrib>Grappin, Roland</creatorcontrib><creatorcontrib>Hellinger, Petr</creatorcontrib><creatorcontrib>Landi, Simone</creatorcontrib><creatorcontrib>Müller, Wolf Christian</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verdini, Andrea</au><au>Grappin, Roland</au><au>Hellinger, Petr</au><au>Landi, Simone</au><au>Müller, Wolf Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANISOTROPY OF THIRD-ORDER STRUCTURE FUNCTIONS IN MHD TURBULENCE</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2015-05-10</date><risdate>2015</risdate><volume>804</volume><issue>2</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>ABSTRACT The measure of the third-order structure function, , is employed in the solar wind to compute the cascade rate of turbulence. In the absence of a mean field , is expected to be isotropic (radial) and independent of the direction of increments, so its measure yields directly the cascade rate. For turbulence with mean field, as in the solar wind, is expected to become more two-dimensional (2D), that is, to have larger perpendicular components, losing the above simple symmetry. To get the cascade rate, one should compute the flux of , which is not feasible with single-spacecraft data; thus, measurements rely on assumptions about the unknown symmetry. We use direct numerical simulations (DNSs) of magnetohydrodynamic (MHD) turbulence to characterize the anisotropy of . We find that for strong guide field the degree of two-dimensionalization depends on the relative importance of shear-Alfvén and pseudo-Alfvén polarizations (the two components of an Alfvén mode in incompressible MHD). The anisotropy also shows up in the inertial range. The more is 2D, the more the inertial range extent differs along parallel and perpendicular directions. We finally test the two methods employed in observations and find that the so-obtained cascade rate may depend on the angle between B0 and the direction of increments. Both methods yield a vanishing cascade rate along the parallel direction, contrary to observations, suggesting a weaker anisotropy of solar wind turbulence compared to our DNSs. This could be due to a weaker mean field and/or to solar wind expansion.</abstract><cop>United Kingdom</cop><pub>The American Astronomical Society</pub><doi>10.1088/0004-637X/804/2/119</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1322-8712</orcidid><orcidid>https://orcid.org/0000-0002-5608-0834</orcidid><orcidid>https://orcid.org/0000-0001-7847-3586</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2015-05, Vol.804 (2), p.1-13
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_osti_scitechconnect_22883219
source IOP Publishing Free Content
subjects ANISOTROPY
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Cascades
COMPARATIVE EVALUATIONS
Computational fluid dynamics
COMPUTERIZED SIMULATION
Fluid flow
Magnetohydrodynamic turbulence
MAGNETOHYDRODYNAMICS
magnetohydrodynamics (MHD)
MANY-DIMENSIONAL CALCULATIONS
MATHEMATICAL METHODS AND COMPUTING
MEAN-FIELD THEORY
Physics
Plasma Physics
POLARIZATION
SOLAR WIND
STRUCTURE FUNCTIONS
SYMMETRY
TURBULENCE
Turbulent flow
Two dimensional
title ANISOTROPY OF THIRD-ORDER STRUCTURE FUNCTIONS IN MHD TURBULENCE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANISOTROPY%20OF%20THIRD-ORDER%20STRUCTURE%20FUNCTIONS%20IN%20MHD%20TURBULENCE&rft.jtitle=The%20Astrophysical%20journal&rft.au=Verdini,%20Andrea&rft.date=2015-05-10&rft.volume=804&rft.issue=2&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/804/2/119&rft_dat=%3Cproquest_O3W%3E1727683748%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1727683748&rft_id=info:pmid/&rfr_iscdi=true