KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. III. STRUCTURE AND DYNAMICS OF FILAMENTS AND CLUMPS IN GIANT MOLECULAR CLOUDS

ABSTRACT We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to ∼0.1 pc. Our primary goal is to understand how dense filaments form in giant molecular clouds (GMCs). These structures, often observed as infrared dark clouds (I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2015-05, Vol.805 (1), p.1-24
Hauptverfasser: Butler, Michael J., Tan, Jonathan C., Loo, Sven Van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 805
creator Butler, Michael J.
Tan, Jonathan C.
Loo, Sven Van
description ABSTRACT We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to ∼0.1 pc. Our primary goal is to understand how dense filaments form in giant molecular clouds (GMCs). These structures, often observed as infrared dark clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate-limiting step controlling global star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. Our study follows on from Van Loo et al., which carried out simulations to 0.5 pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic, and dynamical properties of dense filaments and clumps, including mass surface density ( ) probability distribution functions, filament mass per unit length and its dispersion, lateral profiles, filament fragmentation, filament velocity gradients and infall, and degree of filament and clump virialization. Where possible, these properties are compared to observations of IRDCs. By many metrics, especially too large mass fractions of high material, too high mass per unit length dispersion due to dense clump formation, too high velocity gradients, and too high velocity dispersion for a given mass per unit length, the simulated filaments differ from observed IRDCs. We thus conclude that IRDCs do not form from global fast collapse of GMCs. Rather, we expect that IRDC formation and collapse are slowed significantly by the influence of dynamically important magnetic fields, which may thus play a crucial role in regulating galactic star formation rates.
doi_str_mv 10.1088/0004-637X/805/1/1
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22883203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793222776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-8a04adb1226513286bfc2e8f96eadf3f42459110c52f381a6142d1df320970013</originalsourceid><addsrcrecordid>eNqNkclu2zAQhokiBeKkfYDcCOSSi2wuWqgjIcsuES2BKAHpiVBoClXgWI4oH_ISfeZSdpFj0dNg5v9mwfwA3GG0xIixFULI90IaPa8YClZ4hb-ABQ4o83waRFdg8alfgxtrX-eUxPEC_H4UWfnEK5kmnkx4lkIp8ibjtSgLCcsNlDWv4Kas8nMJigKuhXyEW57xZ5HKJRRCLB1VNUndVCnkxRqufxY8F8m5fyMynqdFLc9KkjX5k5ynbAUvapiXWZq4dZVTymYtv4GvXbu35vvfeAuaTVonP7ys3Ap3nqd9giaPtchvdy-YkDDAlLDwpdPEsC4OTbvraOcTP4gxRjogHWW4DbFPdtgpBMURQpjegvvL3MFOvbK6n4z-pYfDwehJEcKYI6mjHi7UcRzeT8ZO6q232uz37cEMJ6twFFNCSBSF_4GGQcyQHxOH4guqx8Ha0XTqOPZv7fihMFKzmWp2R81mKWemwmq-17v09MNRvQ6n8eC-8w_-D9yykcc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765980492</pqid></control><display><type>article</type><title>KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. III. STRUCTURE AND DYNAMICS OF FILAMENTS AND CLUMPS IN GIANT MOLECULAR CLOUDS</title><source>IOP Publishing Free Content</source><creator>Butler, Michael J. ; Tan, Jonathan C. ; Loo, Sven Van</creator><creatorcontrib>Butler, Michael J. ; Tan, Jonathan C. ; Loo, Sven Van</creatorcontrib><description>ABSTRACT We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to ∼0.1 pc. Our primary goal is to understand how dense filaments form in giant molecular clouds (GMCs). These structures, often observed as infrared dark clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate-limiting step controlling global star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. Our study follows on from Van Loo et al., which carried out simulations to 0.5 pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic, and dynamical properties of dense filaments and clumps, including mass surface density ( ) probability distribution functions, filament mass per unit length and its dispersion, lateral profiles, filament fragmentation, filament velocity gradients and infall, and degree of filament and clump virialization. Where possible, these properties are compared to observations of IRDCs. By many metrics, especially too large mass fractions of high material, too high mass per unit length dispersion due to dense clump formation, too high velocity gradients, and too high velocity dispersion for a given mass per unit length, the simulated filaments differ from observed IRDCs. We thus conclude that IRDCs do not form from global fast collapse of GMCs. Rather, we expect that IRDC formation and collapse are slowed significantly by the influence of dynamically important magnetic fields, which may thus play a crucial role in regulating galactic star formation rates.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/805/1/1</identifier><language>eng</language><publisher>United Kingdom: The American Astronomical Society</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Clumps ; Collapse ; COMPARATIVE EVALUATIONS ; COMPUTERIZED SIMULATION ; COSMIC GASES ; DENSITY ; DISPERSIONS ; DISTRIBUTION FUNCTIONS ; Filaments ; Formations ; GALAXIES ; galaxies: ISM ; galaxies: star clusters: general ; HYDRODYNAMICS ; ISM: clouds ; ISM: structure ; MAGNETIC FIELDS ; MASS ; methods: numerical ; Molecular structure ; PROBABILITY ; RESOLUTION ; Simulation ; STAR CLUSTERS ; STAR EVOLUTION ; Star formation rate ; STARS ; stars: formation ; VELOCITY</subject><ispartof>The Astrophysical journal, 2015-05, Vol.805 (1), p.1-24</ispartof><rights>2015. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-8a04adb1226513286bfc2e8f96eadf3f42459110c52f381a6142d1df320970013</citedby><cites>FETCH-LOGICAL-c420t-8a04adb1226513286bfc2e8f96eadf3f42459110c52f381a6142d1df320970013</cites><orcidid>0000-0002-3389-9142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/805/1/1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,38869,53846</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/805/1/1$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22883203$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Butler, Michael J.</creatorcontrib><creatorcontrib>Tan, Jonathan C.</creatorcontrib><creatorcontrib>Loo, Sven Van</creatorcontrib><title>KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. III. STRUCTURE AND DYNAMICS OF FILAMENTS AND CLUMPS IN GIANT MOLECULAR CLOUDS</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to ∼0.1 pc. Our primary goal is to understand how dense filaments form in giant molecular clouds (GMCs). These structures, often observed as infrared dark clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate-limiting step controlling global star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. Our study follows on from Van Loo et al., which carried out simulations to 0.5 pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic, and dynamical properties of dense filaments and clumps, including mass surface density ( ) probability distribution functions, filament mass per unit length and its dispersion, lateral profiles, filament fragmentation, filament velocity gradients and infall, and degree of filament and clump virialization. Where possible, these properties are compared to observations of IRDCs. By many metrics, especially too large mass fractions of high material, too high mass per unit length dispersion due to dense clump formation, too high velocity gradients, and too high velocity dispersion for a given mass per unit length, the simulated filaments differ from observed IRDCs. We thus conclude that IRDCs do not form from global fast collapse of GMCs. Rather, we expect that IRDC formation and collapse are slowed significantly by the influence of dynamically important magnetic fields, which may thus play a crucial role in regulating galactic star formation rates.</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Clumps</subject><subject>Collapse</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COSMIC GASES</subject><subject>DENSITY</subject><subject>DISPERSIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>Filaments</subject><subject>Formations</subject><subject>GALAXIES</subject><subject>galaxies: ISM</subject><subject>galaxies: star clusters: general</subject><subject>HYDRODYNAMICS</subject><subject>ISM: clouds</subject><subject>ISM: structure</subject><subject>MAGNETIC FIELDS</subject><subject>MASS</subject><subject>methods: numerical</subject><subject>Molecular structure</subject><subject>PROBABILITY</subject><subject>RESOLUTION</subject><subject>Simulation</subject><subject>STAR CLUSTERS</subject><subject>STAR EVOLUTION</subject><subject>Star formation rate</subject><subject>STARS</subject><subject>stars: formation</subject><subject>VELOCITY</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkclu2zAQhokiBeKkfYDcCOSSi2wuWqgjIcsuES2BKAHpiVBoClXgWI4oH_ISfeZSdpFj0dNg5v9mwfwA3GG0xIixFULI90IaPa8YClZ4hb-ABQ4o83waRFdg8alfgxtrX-eUxPEC_H4UWfnEK5kmnkx4lkIp8ibjtSgLCcsNlDWv4Kas8nMJigKuhXyEW57xZ5HKJRRCLB1VNUndVCnkxRqufxY8F8m5fyMynqdFLc9KkjX5k5ynbAUvapiXWZq4dZVTymYtv4GvXbu35vvfeAuaTVonP7ys3Ap3nqd9giaPtchvdy-YkDDAlLDwpdPEsC4OTbvraOcTP4gxRjogHWW4DbFPdtgpBMURQpjegvvL3MFOvbK6n4z-pYfDwehJEcKYI6mjHi7UcRzeT8ZO6q232uz37cEMJ6twFFNCSBSF_4GGQcyQHxOH4guqx8Ha0XTqOPZv7fihMFKzmWp2R81mKWemwmq-17v09MNRvQ6n8eC-8w_-D9yykcc</recordid><startdate>20150520</startdate><enddate>20150520</enddate><creator>Butler, Michael J.</creator><creator>Tan, Jonathan C.</creator><creator>Loo, Sven Van</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3389-9142</orcidid></search><sort><creationdate>20150520</creationdate><title>KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. III. STRUCTURE AND DYNAMICS OF FILAMENTS AND CLUMPS IN GIANT MOLECULAR CLOUDS</title><author>Butler, Michael J. ; Tan, Jonathan C. ; Loo, Sven Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-8a04adb1226513286bfc2e8f96eadf3f42459110c52f381a6142d1df320970013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Clumps</topic><topic>Collapse</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COSMIC GASES</topic><topic>DENSITY</topic><topic>DISPERSIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>Filaments</topic><topic>Formations</topic><topic>GALAXIES</topic><topic>galaxies: ISM</topic><topic>galaxies: star clusters: general</topic><topic>HYDRODYNAMICS</topic><topic>ISM: clouds</topic><topic>ISM: structure</topic><topic>MAGNETIC FIELDS</topic><topic>MASS</topic><topic>methods: numerical</topic><topic>Molecular structure</topic><topic>PROBABILITY</topic><topic>RESOLUTION</topic><topic>Simulation</topic><topic>STAR CLUSTERS</topic><topic>STAR EVOLUTION</topic><topic>Star formation rate</topic><topic>STARS</topic><topic>stars: formation</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butler, Michael J.</creatorcontrib><creatorcontrib>Tan, Jonathan C.</creatorcontrib><creatorcontrib>Loo, Sven Van</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Butler, Michael J.</au><au>Tan, Jonathan C.</au><au>Loo, Sven Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. III. STRUCTURE AND DYNAMICS OF FILAMENTS AND CLUMPS IN GIANT MOLECULAR CLOUDS</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2015-05-20</date><risdate>2015</risdate><volume>805</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>ABSTRACT We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to ∼0.1 pc. Our primary goal is to understand how dense filaments form in giant molecular clouds (GMCs). These structures, often observed as infrared dark clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate-limiting step controlling global star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. Our study follows on from Van Loo et al., which carried out simulations to 0.5 pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic, and dynamical properties of dense filaments and clumps, including mass surface density ( ) probability distribution functions, filament mass per unit length and its dispersion, lateral profiles, filament fragmentation, filament velocity gradients and infall, and degree of filament and clump virialization. Where possible, these properties are compared to observations of IRDCs. By many metrics, especially too large mass fractions of high material, too high mass per unit length dispersion due to dense clump formation, too high velocity gradients, and too high velocity dispersion for a given mass per unit length, the simulated filaments differ from observed IRDCs. We thus conclude that IRDCs do not form from global fast collapse of GMCs. Rather, we expect that IRDC formation and collapse are slowed significantly by the influence of dynamically important magnetic fields, which may thus play a crucial role in regulating galactic star formation rates.</abstract><cop>United Kingdom</cop><pub>The American Astronomical Society</pub><doi>10.1088/0004-637X/805/1/1</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3389-9142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2015-05, Vol.805 (1), p.1-24
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_osti_scitechconnect_22883203
source IOP Publishing Free Content
subjects ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Clumps
Collapse
COMPARATIVE EVALUATIONS
COMPUTERIZED SIMULATION
COSMIC GASES
DENSITY
DISPERSIONS
DISTRIBUTION FUNCTIONS
Filaments
Formations
GALAXIES
galaxies: ISM
galaxies: star clusters: general
HYDRODYNAMICS
ISM: clouds
ISM: structure
MAGNETIC FIELDS
MASS
methods: numerical
Molecular structure
PROBABILITY
RESOLUTION
Simulation
STAR CLUSTERS
STAR EVOLUTION
Star formation rate
STARS
stars: formation
VELOCITY
title KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. III. STRUCTURE AND DYNAMICS OF FILAMENTS AND CLUMPS IN GIANT MOLECULAR CLOUDS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KILOPARSEC-SCALE%20SIMULATIONS%20OF%20STAR%20FORMATION%20IN%20DISK%20GALAXIES.%20III.%20STRUCTURE%20AND%20DYNAMICS%20OF%20FILAMENTS%20AND%20CLUMPS%20IN%20GIANT%20MOLECULAR%20CLOUDS&rft.jtitle=The%20Astrophysical%20journal&rft.au=Butler,%20Michael%20J.&rft.date=2015-05-20&rft.volume=805&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/805/1/1&rft_dat=%3Cproquest_O3W%3E1793222776%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765980492&rft_id=info:pmid/&rfr_iscdi=true