Radio Luminosity Function of Flat-spectrum Radio Quasars

We present the radio luminosity function (LF) of flat-spectrum radio quasars (FSRQ), using the the largest and most complete sample to date. Cross-matching between the FIRST 20 cm and GB6 6 cm radio surveys, we find 638 flat-spectrum radio sources above 220 mJy at 1.4 GHz; of these, 327 are are clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-06, Vol.842 (2), p.87
Hauptverfasser: Mao, Peiyuan, Urry, C. Megan, Marchesini, Ezequiel, Landoni, Marco, Massaro, Francesco, Ajello, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 87
container_title The Astrophysical journal
container_volume 842
creator Mao, Peiyuan
Urry, C. Megan
Marchesini, Ezequiel
Landoni, Marco
Massaro, Francesco
Ajello, Marco
description We present the radio luminosity function (LF) of flat-spectrum radio quasars (FSRQ), using the the largest and most complete sample to date. Cross-matching between the FIRST 20 cm and GB6 6 cm radio surveys, we find 638 flat-spectrum radio sources above 220 mJy at 1.4 GHz; of these, 327 are are classified and verified using optical spectroscopy data, mainly from Sloan Digital Sky Survey Data Release 12. We also considered flat-spectrum radio sources that lack both literature references and optical spectroscopy, and we identified 12 out of the 43 such sources to potentially be FSRQs, using their WISE colors. From the fully identified sample of 242 FSRQs, we derived the radio LF and cosmic evolution of blazars at 1.4 GHz, finding good agreement with previous work at 5 GHz. The number density of FSRQs increases dramatically to a redshift of z ∼ 2 and then declines for higher redshifts. Furthermore, the redshift at which the quasar density peaks is clearly dependent on luminosity, with more luminous sources peaking at higher redshifts. The approximate best-fit LF for a luminosity-dependent evolutionary model is a broken power-law with slopes ∼0.7 and ∼1.7 below and above the break luminosity, erg s−1, respectively.
doi_str_mv 10.3847/1538-4357/aa74b8
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22876113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365942322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-3e4e4011f02540ea64591334a80f155a3cafc04966350c05a2fb1fa289ce92733</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePRa8Wjcfk7Y5yuKqsCCKgrcwGxPMstvUJD34722pqBdPwwzP-zI8hJwzeiUaqBdMiqYEIesFYg2b5oDMfk6HZEYphbIS9esxOUlpO65cqRlpnvDNh2Ld730bks-fxapvTfahLYIrVjvMZeqsybHfFxP62GPCmE7JkcNdsmffc05eVjfPy7ty_XB7v7xelwYAciksWKCMOcolUIsVSMWEAGyoY1KiMOgMBVVVQlJDJXK3YQ55o4xVvBZiTi6m3pCy18n4bM27CW07PKU5b-qKsT9UF8NHb1PW29DHdnhMc1FJBVxwPlB0okwMKUXrdBf9HuOnZlSPFvWoTI_K9GRxiFxOER-6385_8S-7uXCN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365942322</pqid></control><display><type>article</type><title>Radio Luminosity Function of Flat-spectrum Radio Quasars</title><source>IOP Publishing Free Content</source><creator>Mao, Peiyuan ; Urry, C. Megan ; Marchesini, Ezequiel ; Landoni, Marco ; Massaro, Francesco ; Ajello, Marco</creator><creatorcontrib>Mao, Peiyuan ; Urry, C. Megan ; Marchesini, Ezequiel ; Landoni, Marco ; Massaro, Francesco ; Ajello, Marco</creatorcontrib><description>We present the radio luminosity function (LF) of flat-spectrum radio quasars (FSRQ), using the the largest and most complete sample to date. Cross-matching between the FIRST 20 cm and GB6 6 cm radio surveys, we find 638 flat-spectrum radio sources above 220 mJy at 1.4 GHz; of these, 327 are are classified and verified using optical spectroscopy data, mainly from Sloan Digital Sky Survey Data Release 12. We also considered flat-spectrum radio sources that lack both literature references and optical spectroscopy, and we identified 12 out of the 43 such sources to potentially be FSRQs, using their WISE colors. From the fully identified sample of 242 FSRQs, we derived the radio LF and cosmic evolution of blazars at 1.4 GHz, finding good agreement with previous work at 5 GHz. The number density of FSRQs increases dramatically to a redshift of z ∼ 2 and then declines for higher redshifts. Furthermore, the redshift at which the quasar density peaks is clearly dependent on luminosity, with more luminous sources peaking at higher redshifts. The approximate best-fit LF for a luminosity-dependent evolutionary model is a broken power-law with slopes ∼0.7 and ∼1.7 below and above the break luminosity, erg s−1, respectively.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa74b8</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COSMOLOGY ; cosmology: observations ; DENSITY ; GALAXIES ; galaxies: active ; galaxies: jets ; GHZ RANGE ; LUMINOSITY ; Power law ; QUASARS ; quasars: general ; Radio ; RED SHIFT ; Sky surveys (astronomy) ; SPECTRA ; Spectroscopy ; Spectrum analysis ; STAR EVOLUTION</subject><ispartof>The Astrophysical journal, 2017-06, Vol.842 (2), p.87</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jun 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-3e4e4011f02540ea64591334a80f155a3cafc04966350c05a2fb1fa289ce92733</citedby><cites>FETCH-LOGICAL-c444t-3e4e4011f02540ea64591334a80f155a3cafc04966350c05a2fb1fa289ce92733</cites><orcidid>0000-0002-0745-9792 ; 0000-0002-6584-1703 ; 0000-0003-2204-8112 ; 0000-0002-1704-9850 ; 0000-0001-6188-8187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa74b8/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa74b8$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22876113$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Peiyuan</creatorcontrib><creatorcontrib>Urry, C. Megan</creatorcontrib><creatorcontrib>Marchesini, Ezequiel</creatorcontrib><creatorcontrib>Landoni, Marco</creatorcontrib><creatorcontrib>Massaro, Francesco</creatorcontrib><creatorcontrib>Ajello, Marco</creatorcontrib><title>Radio Luminosity Function of Flat-spectrum Radio Quasars</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present the radio luminosity function (LF) of flat-spectrum radio quasars (FSRQ), using the the largest and most complete sample to date. Cross-matching between the FIRST 20 cm and GB6 6 cm radio surveys, we find 638 flat-spectrum radio sources above 220 mJy at 1.4 GHz; of these, 327 are are classified and verified using optical spectroscopy data, mainly from Sloan Digital Sky Survey Data Release 12. We also considered flat-spectrum radio sources that lack both literature references and optical spectroscopy, and we identified 12 out of the 43 such sources to potentially be FSRQs, using their WISE colors. From the fully identified sample of 242 FSRQs, we derived the radio LF and cosmic evolution of blazars at 1.4 GHz, finding good agreement with previous work at 5 GHz. The number density of FSRQs increases dramatically to a redshift of z ∼ 2 and then declines for higher redshifts. Furthermore, the redshift at which the quasar density peaks is clearly dependent on luminosity, with more luminous sources peaking at higher redshifts. The approximate best-fit LF for a luminosity-dependent evolutionary model is a broken power-law with slopes ∼0.7 and ∼1.7 below and above the break luminosity, erg s−1, respectively.</description><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COSMOLOGY</subject><subject>cosmology: observations</subject><subject>DENSITY</subject><subject>GALAXIES</subject><subject>galaxies: active</subject><subject>galaxies: jets</subject><subject>GHZ RANGE</subject><subject>LUMINOSITY</subject><subject>Power law</subject><subject>QUASARS</subject><subject>quasars: general</subject><subject>Radio</subject><subject>RED SHIFT</subject><subject>Sky surveys (astronomy)</subject><subject>SPECTRA</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>STAR EVOLUTION</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePRa8Wjcfk7Y5yuKqsCCKgrcwGxPMstvUJD34722pqBdPwwzP-zI8hJwzeiUaqBdMiqYEIesFYg2b5oDMfk6HZEYphbIS9esxOUlpO65cqRlpnvDNh2Ld730bks-fxapvTfahLYIrVjvMZeqsybHfFxP62GPCmE7JkcNdsmffc05eVjfPy7ty_XB7v7xelwYAciksWKCMOcolUIsVSMWEAGyoY1KiMOgMBVVVQlJDJXK3YQ55o4xVvBZiTi6m3pCy18n4bM27CW07PKU5b-qKsT9UF8NHb1PW29DHdnhMc1FJBVxwPlB0okwMKUXrdBf9HuOnZlSPFvWoTI_K9GRxiFxOER-6385_8S-7uXCN</recordid><startdate>20170620</startdate><enddate>20170620</enddate><creator>Mao, Peiyuan</creator><creator>Urry, C. Megan</creator><creator>Marchesini, Ezequiel</creator><creator>Landoni, Marco</creator><creator>Massaro, Francesco</creator><creator>Ajello, Marco</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0745-9792</orcidid><orcidid>https://orcid.org/0000-0002-6584-1703</orcidid><orcidid>https://orcid.org/0000-0003-2204-8112</orcidid><orcidid>https://orcid.org/0000-0002-1704-9850</orcidid><orcidid>https://orcid.org/0000-0001-6188-8187</orcidid></search><sort><creationdate>20170620</creationdate><title>Radio Luminosity Function of Flat-spectrum Radio Quasars</title><author>Mao, Peiyuan ; Urry, C. Megan ; Marchesini, Ezequiel ; Landoni, Marco ; Massaro, Francesco ; Ajello, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-3e4e4011f02540ea64591334a80f155a3cafc04966350c05a2fb1fa289ce92733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COSMOLOGY</topic><topic>cosmology: observations</topic><topic>DENSITY</topic><topic>GALAXIES</topic><topic>galaxies: active</topic><topic>galaxies: jets</topic><topic>GHZ RANGE</topic><topic>LUMINOSITY</topic><topic>Power law</topic><topic>QUASARS</topic><topic>quasars: general</topic><topic>Radio</topic><topic>RED SHIFT</topic><topic>Sky surveys (astronomy)</topic><topic>SPECTRA</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>STAR EVOLUTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Peiyuan</creatorcontrib><creatorcontrib>Urry, C. Megan</creatorcontrib><creatorcontrib>Marchesini, Ezequiel</creatorcontrib><creatorcontrib>Landoni, Marco</creatorcontrib><creatorcontrib>Massaro, Francesco</creatorcontrib><creatorcontrib>Ajello, Marco</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mao, Peiyuan</au><au>Urry, C. Megan</au><au>Marchesini, Ezequiel</au><au>Landoni, Marco</au><au>Massaro, Francesco</au><au>Ajello, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radio Luminosity Function of Flat-spectrum Radio Quasars</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-06-20</date><risdate>2017</risdate><volume>842</volume><issue>2</issue><spage>87</spage><pages>87-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present the radio luminosity function (LF) of flat-spectrum radio quasars (FSRQ), using the the largest and most complete sample to date. Cross-matching between the FIRST 20 cm and GB6 6 cm radio surveys, we find 638 flat-spectrum radio sources above 220 mJy at 1.4 GHz; of these, 327 are are classified and verified using optical spectroscopy data, mainly from Sloan Digital Sky Survey Data Release 12. We also considered flat-spectrum radio sources that lack both literature references and optical spectroscopy, and we identified 12 out of the 43 such sources to potentially be FSRQs, using their WISE colors. From the fully identified sample of 242 FSRQs, we derived the radio LF and cosmic evolution of blazars at 1.4 GHz, finding good agreement with previous work at 5 GHz. The number density of FSRQs increases dramatically to a redshift of z ∼ 2 and then declines for higher redshifts. Furthermore, the redshift at which the quasar density peaks is clearly dependent on luminosity, with more luminous sources peaking at higher redshifts. The approximate best-fit LF for a luminosity-dependent evolutionary model is a broken power-law with slopes ∼0.7 and ∼1.7 below and above the break luminosity, erg s−1, respectively.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa74b8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0745-9792</orcidid><orcidid>https://orcid.org/0000-0002-6584-1703</orcidid><orcidid>https://orcid.org/0000-0003-2204-8112</orcidid><orcidid>https://orcid.org/0000-0002-1704-9850</orcidid><orcidid>https://orcid.org/0000-0001-6188-8187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-06, Vol.842 (2), p.87
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22876113
source IOP Publishing Free Content
subjects Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COSMOLOGY
cosmology: observations
DENSITY
GALAXIES
galaxies: active
galaxies: jets
GHZ RANGE
LUMINOSITY
Power law
QUASARS
quasars: general
Radio
RED SHIFT
Sky surveys (astronomy)
SPECTRA
Spectroscopy
Spectrum analysis
STAR EVOLUTION
title Radio Luminosity Function of Flat-spectrum Radio Quasars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radio%20Luminosity%20Function%20of%20Flat-spectrum%20Radio%20Quasars&rft.jtitle=The%20Astrophysical%20journal&rft.au=Mao,%20Peiyuan&rft.date=2017-06-20&rft.volume=842&rft.issue=2&rft.spage=87&rft.pages=87-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa74b8&rft_dat=%3Cproquest_O3W%3E2365942322%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365942322&rft_id=info:pmid/&rfr_iscdi=true