The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies

We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-02, Vol.836 (2), p.185
Hauptverfasser: Tabatabaei, F. S., Schinnerer, E., Krause, M., Dumas, G., Meidt, S., Damas-Segovia, A., Beck, R., Murphy, E. J., Mulcahy, D. D., Groves, B., Bolatto, A., Dale, D., Galametz, M., Sandstrom, K., Boquien, M., Calzetti, D., Kennicutt, R. C., Hunt, L. K., Looze, I. De, Pellegrini, E. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 185
container_title The Astrophysical journal
container_volume 836
creator Tabatabaei, F. S.
Schinnerer, E.
Krause, M.
Dumas, G.
Meidt, S.
Damas-Segovia, A.
Beck, R.
Murphy, E. J.
Mulcahy, D. D.
Groves, B.
Bolatto, A.
Dale, D.
Galametz, M.
Sandstrom, K.
Boquien, M.
Calzetti, D.
Kennicutt, R. C.
Hunt, L. K.
Looze, I. De
Pellegrini, E. W.
description We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ( ) and the thermal fraction ( ) with mean values of for the total spectral index) and = (10 9)% at 1.4 GHz. The MRC luminosity changes over ∼3 orders of magnitude in the sample, MRC . The thermal emission is responsible for ∼23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.
doi_str_mv 10.3847/1538-4357/836/2/185
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22869317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365766543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-2bc133b3334d240ab3cab00d1ca36a59594aec11996629330e0276031d6c25683</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKe_wJeAz7VJbpO2jzJ1CgNhm-JbSNPMZXRNTTJw_97WiXvz6XIP5xzu_RC6puQWiixPKYciyYDnaQEiZSkt-Aka_amnaEQIyRIB-fs5ughhM6ysLEfobbk2eK5q6_CiMzp61eCH1viPPb63IXpb7aJ1LVZtjRdR-WTl_Fb9SHMVDZ6oxlb-INgWT1WjvqwJl-hspZpgrn7nGL0-PiwnT8nsZfo8uZslOuMiJqzSFKACgKxmGVEVaFURUlOtQChe8jJTRlNalkKwEoAYwnJBgNZCMy4KGKObQ68L0cqgbTR6rV3b9q9IxgpRAs2Prs67z50JUW7czrf9YZKB4LkQPIPeBQeX9i4Eb1ay83ar_F5SIgfMcgAqB6CyxyyZ7DH3qfSQsq471v6X-AbpMHwf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365766543</pqid></control><display><type>article</type><title>The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies</title><source>IOP Publishing Free Content</source><creator>Tabatabaei, F. S. ; Schinnerer, E. ; Krause, M. ; Dumas, G. ; Meidt, S. ; Damas-Segovia, A. ; Beck, R. ; Murphy, E. J. ; Mulcahy, D. D. ; Groves, B. ; Bolatto, A. ; Dale, D. ; Galametz, M. ; Sandstrom, K. ; Boquien, M. ; Calzetti, D. ; Kennicutt, R. C. ; Hunt, L. K. ; Looze, I. De ; Pellegrini, E. W.</creator><creatorcontrib>Tabatabaei, F. S. ; Schinnerer, E. ; Krause, M. ; Dumas, G. ; Meidt, S. ; Damas-Segovia, A. ; Beck, R. ; Murphy, E. J. ; Mulcahy, D. D. ; Groves, B. ; Bolatto, A. ; Dale, D. ; Galametz, M. ; Sandstrom, K. ; Boquien, M. ; Calzetti, D. ; Kennicutt, R. C. ; Hunt, L. K. ; Looze, I. De ; Pellegrini, E. W.</creatorcontrib><description>We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ( ) and the thermal fraction ( ) with mean values of for the total spectral index) and = (10 9)% at 1.4 GHz. The MRC luminosity changes over ∼3 orders of magnitude in the sample, MRC . The thermal emission is responsible for ∼23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/836/2/185</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aquatic birds ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BOLOMETERS ; CALIBRATION ; COMPARATIVE EVALUATIONS ; COSMIC RADIATION ; Cosmic ray electrons ; Cosmic rays ; EMISSION ; ENERGY SPECTRA ; FEEDBACK ; Galactic evolution ; GALAXIES ; galaxies: ISM ; galaxies: star formation ; Galaxy distribution ; infrared: galaxies ; LUMINOSITY ; MAGNETIC FIELDS ; MARINE SURVEYS ; Markov chains ; MARKOV PROCESS ; MONOCHROMATIC RADIATION ; MONTE CARLO METHOD ; Radio ; radio continuum: galaxies ; RED SHIFT ; Spectra ; Spectral energy distribution ; STAR EVOLUTION ; Star formation ; STARS ; Stars &amp; galaxies ; surveys ; Thermal emission ; Tracers</subject><ispartof>The Astrophysical journal, 2017-02, Vol.836 (2), p.185</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-2bc133b3334d240ab3cab00d1ca36a59594aec11996629330e0276031d6c25683</citedby><cites>FETCH-LOGICAL-c456t-2bc133b3334d240ab3cab00d1ca36a59594aec11996629330e0276031d6c25683</cites><orcidid>0000-0002-5480-5686 ; 0000-0001-7089-7325 ; 0000-0002-9768-0246 ; 0000-0002-0377-0970 ; 0000-0002-3933-7677 ; 0000-0002-6118-4048 ; 0000-0002-5189-8004 ; 0000-0001-9162-2371 ; 0000-0002-0283-8689 ; 0000-0002-5747-8510 ; 0000-0002-4378-8534 ; 0000-0002-9833-2948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/836/2/185/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/836/2/185$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22869317$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tabatabaei, F. S.</creatorcontrib><creatorcontrib>Schinnerer, E.</creatorcontrib><creatorcontrib>Krause, M.</creatorcontrib><creatorcontrib>Dumas, G.</creatorcontrib><creatorcontrib>Meidt, S.</creatorcontrib><creatorcontrib>Damas-Segovia, A.</creatorcontrib><creatorcontrib>Beck, R.</creatorcontrib><creatorcontrib>Murphy, E. J.</creatorcontrib><creatorcontrib>Mulcahy, D. D.</creatorcontrib><creatorcontrib>Groves, B.</creatorcontrib><creatorcontrib>Bolatto, A.</creatorcontrib><creatorcontrib>Dale, D.</creatorcontrib><creatorcontrib>Galametz, M.</creatorcontrib><creatorcontrib>Sandstrom, K.</creatorcontrib><creatorcontrib>Boquien, M.</creatorcontrib><creatorcontrib>Calzetti, D.</creatorcontrib><creatorcontrib>Kennicutt, R. C.</creatorcontrib><creatorcontrib>Hunt, L. K.</creatorcontrib><creatorcontrib>Looze, I. De</creatorcontrib><creatorcontrib>Pellegrini, E. W.</creatorcontrib><title>The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ( ) and the thermal fraction ( ) with mean values of for the total spectral index) and = (10 9)% at 1.4 GHz. The MRC luminosity changes over ∼3 orders of magnitude in the sample, MRC . The thermal emission is responsible for ∼23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.</description><subject>Aquatic birds</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BOLOMETERS</subject><subject>CALIBRATION</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>COSMIC RADIATION</subject><subject>Cosmic ray electrons</subject><subject>Cosmic rays</subject><subject>EMISSION</subject><subject>ENERGY SPECTRA</subject><subject>FEEDBACK</subject><subject>Galactic evolution</subject><subject>GALAXIES</subject><subject>galaxies: ISM</subject><subject>galaxies: star formation</subject><subject>Galaxy distribution</subject><subject>infrared: galaxies</subject><subject>LUMINOSITY</subject><subject>MAGNETIC FIELDS</subject><subject>MARINE SURVEYS</subject><subject>Markov chains</subject><subject>MARKOV PROCESS</subject><subject>MONOCHROMATIC RADIATION</subject><subject>MONTE CARLO METHOD</subject><subject>Radio</subject><subject>radio continuum: galaxies</subject><subject>RED SHIFT</subject><subject>Spectra</subject><subject>Spectral energy distribution</subject><subject>STAR EVOLUTION</subject><subject>Star formation</subject><subject>STARS</subject><subject>Stars &amp; galaxies</subject><subject>surveys</subject><subject>Thermal emission</subject><subject>Tracers</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKe_wJeAz7VJbpO2jzJ1CgNhm-JbSNPMZXRNTTJw_97WiXvz6XIP5xzu_RC6puQWiixPKYciyYDnaQEiZSkt-Aka_amnaEQIyRIB-fs5ughhM6ysLEfobbk2eK5q6_CiMzp61eCH1viPPb63IXpb7aJ1LVZtjRdR-WTl_Fb9SHMVDZ6oxlb-INgWT1WjvqwJl-hspZpgrn7nGL0-PiwnT8nsZfo8uZslOuMiJqzSFKACgKxmGVEVaFURUlOtQChe8jJTRlNalkKwEoAYwnJBgNZCMy4KGKObQ68L0cqgbTR6rV3b9q9IxgpRAs2Prs67z50JUW7czrf9YZKB4LkQPIPeBQeX9i4Eb1ay83ar_F5SIgfMcgAqB6CyxyyZ7DH3qfSQsq471v6X-AbpMHwf</recordid><startdate>20170220</startdate><enddate>20170220</enddate><creator>Tabatabaei, F. S.</creator><creator>Schinnerer, E.</creator><creator>Krause, M.</creator><creator>Dumas, G.</creator><creator>Meidt, S.</creator><creator>Damas-Segovia, A.</creator><creator>Beck, R.</creator><creator>Murphy, E. J.</creator><creator>Mulcahy, D. D.</creator><creator>Groves, B.</creator><creator>Bolatto, A.</creator><creator>Dale, D.</creator><creator>Galametz, M.</creator><creator>Sandstrom, K.</creator><creator>Boquien, M.</creator><creator>Calzetti, D.</creator><creator>Kennicutt, R. C.</creator><creator>Hunt, L. K.</creator><creator>Looze, I. De</creator><creator>Pellegrini, E. W.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5480-5686</orcidid><orcidid>https://orcid.org/0000-0001-7089-7325</orcidid><orcidid>https://orcid.org/0000-0002-9768-0246</orcidid><orcidid>https://orcid.org/0000-0002-0377-0970</orcidid><orcidid>https://orcid.org/0000-0002-3933-7677</orcidid><orcidid>https://orcid.org/0000-0002-6118-4048</orcidid><orcidid>https://orcid.org/0000-0002-5189-8004</orcidid><orcidid>https://orcid.org/0000-0001-9162-2371</orcidid><orcidid>https://orcid.org/0000-0002-0283-8689</orcidid><orcidid>https://orcid.org/0000-0002-5747-8510</orcidid><orcidid>https://orcid.org/0000-0002-4378-8534</orcidid><orcidid>https://orcid.org/0000-0002-9833-2948</orcidid></search><sort><creationdate>20170220</creationdate><title>The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies</title><author>Tabatabaei, F. S. ; Schinnerer, E. ; Krause, M. ; Dumas, G. ; Meidt, S. ; Damas-Segovia, A. ; Beck, R. ; Murphy, E. J. ; Mulcahy, D. D. ; Groves, B. ; Bolatto, A. ; Dale, D. ; Galametz, M. ; Sandstrom, K. ; Boquien, M. ; Calzetti, D. ; Kennicutt, R. C. ; Hunt, L. K. ; Looze, I. De ; Pellegrini, E. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-2bc133b3334d240ab3cab00d1ca36a59594aec11996629330e0276031d6c25683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquatic birds</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BOLOMETERS</topic><topic>CALIBRATION</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>COSMIC RADIATION</topic><topic>Cosmic ray electrons</topic><topic>Cosmic rays</topic><topic>EMISSION</topic><topic>ENERGY SPECTRA</topic><topic>FEEDBACK</topic><topic>Galactic evolution</topic><topic>GALAXIES</topic><topic>galaxies: ISM</topic><topic>galaxies: star formation</topic><topic>Galaxy distribution</topic><topic>infrared: galaxies</topic><topic>LUMINOSITY</topic><topic>MAGNETIC FIELDS</topic><topic>MARINE SURVEYS</topic><topic>Markov chains</topic><topic>MARKOV PROCESS</topic><topic>MONOCHROMATIC RADIATION</topic><topic>MONTE CARLO METHOD</topic><topic>Radio</topic><topic>radio continuum: galaxies</topic><topic>RED SHIFT</topic><topic>Spectra</topic><topic>Spectral energy distribution</topic><topic>STAR EVOLUTION</topic><topic>Star formation</topic><topic>STARS</topic><topic>Stars &amp; galaxies</topic><topic>surveys</topic><topic>Thermal emission</topic><topic>Tracers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabatabaei, F. S.</creatorcontrib><creatorcontrib>Schinnerer, E.</creatorcontrib><creatorcontrib>Krause, M.</creatorcontrib><creatorcontrib>Dumas, G.</creatorcontrib><creatorcontrib>Meidt, S.</creatorcontrib><creatorcontrib>Damas-Segovia, A.</creatorcontrib><creatorcontrib>Beck, R.</creatorcontrib><creatorcontrib>Murphy, E. J.</creatorcontrib><creatorcontrib>Mulcahy, D. D.</creatorcontrib><creatorcontrib>Groves, B.</creatorcontrib><creatorcontrib>Bolatto, A.</creatorcontrib><creatorcontrib>Dale, D.</creatorcontrib><creatorcontrib>Galametz, M.</creatorcontrib><creatorcontrib>Sandstrom, K.</creatorcontrib><creatorcontrib>Boquien, M.</creatorcontrib><creatorcontrib>Calzetti, D.</creatorcontrib><creatorcontrib>Kennicutt, R. C.</creatorcontrib><creatorcontrib>Hunt, L. K.</creatorcontrib><creatorcontrib>Looze, I. De</creatorcontrib><creatorcontrib>Pellegrini, E. W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tabatabaei, F. S.</au><au>Schinnerer, E.</au><au>Krause, M.</au><au>Dumas, G.</au><au>Meidt, S.</au><au>Damas-Segovia, A.</au><au>Beck, R.</au><au>Murphy, E. J.</au><au>Mulcahy, D. D.</au><au>Groves, B.</au><au>Bolatto, A.</au><au>Dale, D.</au><au>Galametz, M.</au><au>Sandstrom, K.</au><au>Boquien, M.</au><au>Calzetti, D.</au><au>Kennicutt, R. C.</au><au>Hunt, L. K.</au><au>Looze, I. De</au><au>Pellegrini, E. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-02-20</date><risdate>2017</risdate><volume>836</volume><issue>2</issue><spage>185</spage><pages>185-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ( ) and the thermal fraction ( ) with mean values of for the total spectral index) and = (10 9)% at 1.4 GHz. The MRC luminosity changes over ∼3 orders of magnitude in the sample, MRC . The thermal emission is responsible for ∼23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/836/2/185</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5480-5686</orcidid><orcidid>https://orcid.org/0000-0001-7089-7325</orcidid><orcidid>https://orcid.org/0000-0002-9768-0246</orcidid><orcidid>https://orcid.org/0000-0002-0377-0970</orcidid><orcidid>https://orcid.org/0000-0002-3933-7677</orcidid><orcidid>https://orcid.org/0000-0002-6118-4048</orcidid><orcidid>https://orcid.org/0000-0002-5189-8004</orcidid><orcidid>https://orcid.org/0000-0001-9162-2371</orcidid><orcidid>https://orcid.org/0000-0002-0283-8689</orcidid><orcidid>https://orcid.org/0000-0002-5747-8510</orcidid><orcidid>https://orcid.org/0000-0002-4378-8534</orcidid><orcidid>https://orcid.org/0000-0002-9833-2948</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-02, Vol.836 (2), p.185
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22869317
source IOP Publishing Free Content
subjects Aquatic birds
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BOLOMETERS
CALIBRATION
COMPARATIVE EVALUATIONS
COSMIC RADIATION
Cosmic ray electrons
Cosmic rays
EMISSION
ENERGY SPECTRA
FEEDBACK
Galactic evolution
GALAXIES
galaxies: ISM
galaxies: star formation
Galaxy distribution
infrared: galaxies
LUMINOSITY
MAGNETIC FIELDS
MARINE SURVEYS
Markov chains
MARKOV PROCESS
MONOCHROMATIC RADIATION
MONTE CARLO METHOD
Radio
radio continuum: galaxies
RED SHIFT
Spectra
Spectral energy distribution
STAR EVOLUTION
Star formation
STARS
Stars & galaxies
surveys
Thermal emission
Tracers
title The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Radio%20Spectral%20Energy%20Distribution%20and%20Star-formation%20Rate%20Calibration%20in%20Galaxies&rft.jtitle=The%20Astrophysical%20journal&rft.au=Tabatabaei,%20F.%20S.&rft.date=2017-02-20&rft.volume=836&rft.issue=2&rft.spage=185&rft.pages=185-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/836/2/185&rft_dat=%3Cproquest_O3W%3E2365766543%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365766543&rft_id=info:pmid/&rfr_iscdi=true