The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies
We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, a...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-02, Vol.836 (2), p.185 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | The Astrophysical journal |
container_volume | 836 |
creator | Tabatabaei, F. S. Schinnerer, E. Krause, M. Dumas, G. Meidt, S. Damas-Segovia, A. Beck, R. Murphy, E. J. Mulcahy, D. D. Groves, B. Bolatto, A. Dale, D. Galametz, M. Sandstrom, K. Boquien, M. Calzetti, D. Kennicutt, R. C. Hunt, L. K. Looze, I. De Pellegrini, E. W. |
description | We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ( ) and the thermal fraction ( ) with mean values of for the total spectral index) and = (10 9)% at 1.4 GHz. The MRC luminosity changes over ∼3 orders of magnitude in the sample, MRC . The thermal emission is responsible for ∼23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected. |
doi_str_mv | 10.3847/1538-4357/836/2/185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22869317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365766543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-2bc133b3334d240ab3cab00d1ca36a59594aec11996629330e0276031d6c25683</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKe_wJeAz7VJbpO2jzJ1CgNhm-JbSNPMZXRNTTJw_97WiXvz6XIP5xzu_RC6puQWiixPKYciyYDnaQEiZSkt-Aka_amnaEQIyRIB-fs5ughhM6ysLEfobbk2eK5q6_CiMzp61eCH1viPPb63IXpb7aJ1LVZtjRdR-WTl_Fb9SHMVDZ6oxlb-INgWT1WjvqwJl-hspZpgrn7nGL0-PiwnT8nsZfo8uZslOuMiJqzSFKACgKxmGVEVaFURUlOtQChe8jJTRlNalkKwEoAYwnJBgNZCMy4KGKObQ68L0cqgbTR6rV3b9q9IxgpRAs2Prs67z50JUW7czrf9YZKB4LkQPIPeBQeX9i4Eb1ay83ar_F5SIgfMcgAqB6CyxyyZ7DH3qfSQsq471v6X-AbpMHwf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365766543</pqid></control><display><type>article</type><title>The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies</title><source>IOP Publishing Free Content</source><creator>Tabatabaei, F. S. ; Schinnerer, E. ; Krause, M. ; Dumas, G. ; Meidt, S. ; Damas-Segovia, A. ; Beck, R. ; Murphy, E. J. ; Mulcahy, D. D. ; Groves, B. ; Bolatto, A. ; Dale, D. ; Galametz, M. ; Sandstrom, K. ; Boquien, M. ; Calzetti, D. ; Kennicutt, R. C. ; Hunt, L. K. ; Looze, I. De ; Pellegrini, E. W.</creator><creatorcontrib>Tabatabaei, F. S. ; Schinnerer, E. ; Krause, M. ; Dumas, G. ; Meidt, S. ; Damas-Segovia, A. ; Beck, R. ; Murphy, E. J. ; Mulcahy, D. D. ; Groves, B. ; Bolatto, A. ; Dale, D. ; Galametz, M. ; Sandstrom, K. ; Boquien, M. ; Calzetti, D. ; Kennicutt, R. C. ; Hunt, L. K. ; Looze, I. De ; Pellegrini, E. W.</creatorcontrib><description>We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ( ) and the thermal fraction ( ) with mean values of for the total spectral index) and = (10 9)% at 1.4 GHz. The MRC luminosity changes over ∼3 orders of magnitude in the sample, MRC . The thermal emission is responsible for ∼23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/836/2/185</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Aquatic birds ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BOLOMETERS ; CALIBRATION ; COMPARATIVE EVALUATIONS ; COSMIC RADIATION ; Cosmic ray electrons ; Cosmic rays ; EMISSION ; ENERGY SPECTRA ; FEEDBACK ; Galactic evolution ; GALAXIES ; galaxies: ISM ; galaxies: star formation ; Galaxy distribution ; infrared: galaxies ; LUMINOSITY ; MAGNETIC FIELDS ; MARINE SURVEYS ; Markov chains ; MARKOV PROCESS ; MONOCHROMATIC RADIATION ; MONTE CARLO METHOD ; Radio ; radio continuum: galaxies ; RED SHIFT ; Spectra ; Spectral energy distribution ; STAR EVOLUTION ; Star formation ; STARS ; Stars & galaxies ; surveys ; Thermal emission ; Tracers</subject><ispartof>The Astrophysical journal, 2017-02, Vol.836 (2), p.185</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-2bc133b3334d240ab3cab00d1ca36a59594aec11996629330e0276031d6c25683</citedby><cites>FETCH-LOGICAL-c456t-2bc133b3334d240ab3cab00d1ca36a59594aec11996629330e0276031d6c25683</cites><orcidid>0000-0002-5480-5686 ; 0000-0001-7089-7325 ; 0000-0002-9768-0246 ; 0000-0002-0377-0970 ; 0000-0002-3933-7677 ; 0000-0002-6118-4048 ; 0000-0002-5189-8004 ; 0000-0001-9162-2371 ; 0000-0002-0283-8689 ; 0000-0002-5747-8510 ; 0000-0002-4378-8534 ; 0000-0002-9833-2948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/836/2/185/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/836/2/185$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22869317$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tabatabaei, F. S.</creatorcontrib><creatorcontrib>Schinnerer, E.</creatorcontrib><creatorcontrib>Krause, M.</creatorcontrib><creatorcontrib>Dumas, G.</creatorcontrib><creatorcontrib>Meidt, S.</creatorcontrib><creatorcontrib>Damas-Segovia, A.</creatorcontrib><creatorcontrib>Beck, R.</creatorcontrib><creatorcontrib>Murphy, E. J.</creatorcontrib><creatorcontrib>Mulcahy, D. D.</creatorcontrib><creatorcontrib>Groves, B.</creatorcontrib><creatorcontrib>Bolatto, A.</creatorcontrib><creatorcontrib>Dale, D.</creatorcontrib><creatorcontrib>Galametz, M.</creatorcontrib><creatorcontrib>Sandstrom, K.</creatorcontrib><creatorcontrib>Boquien, M.</creatorcontrib><creatorcontrib>Calzetti, D.</creatorcontrib><creatorcontrib>Kennicutt, R. C.</creatorcontrib><creatorcontrib>Hunt, L. K.</creatorcontrib><creatorcontrib>Looze, I. De</creatorcontrib><creatorcontrib>Pellegrini, E. W.</creatorcontrib><title>The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ( ) and the thermal fraction ( ) with mean values of for the total spectral index) and = (10 9)% at 1.4 GHz. The MRC luminosity changes over ∼3 orders of magnitude in the sample, MRC . The thermal emission is responsible for ∼23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.</description><subject>Aquatic birds</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BOLOMETERS</subject><subject>CALIBRATION</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>COSMIC RADIATION</subject><subject>Cosmic ray electrons</subject><subject>Cosmic rays</subject><subject>EMISSION</subject><subject>ENERGY SPECTRA</subject><subject>FEEDBACK</subject><subject>Galactic evolution</subject><subject>GALAXIES</subject><subject>galaxies: ISM</subject><subject>galaxies: star formation</subject><subject>Galaxy distribution</subject><subject>infrared: galaxies</subject><subject>LUMINOSITY</subject><subject>MAGNETIC FIELDS</subject><subject>MARINE SURVEYS</subject><subject>Markov chains</subject><subject>MARKOV PROCESS</subject><subject>MONOCHROMATIC RADIATION</subject><subject>MONTE CARLO METHOD</subject><subject>Radio</subject><subject>radio continuum: galaxies</subject><subject>RED SHIFT</subject><subject>Spectra</subject><subject>Spectral energy distribution</subject><subject>STAR EVOLUTION</subject><subject>Star formation</subject><subject>STARS</subject><subject>Stars & galaxies</subject><subject>surveys</subject><subject>Thermal emission</subject><subject>Tracers</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKe_wJeAz7VJbpO2jzJ1CgNhm-JbSNPMZXRNTTJw_97WiXvz6XIP5xzu_RC6puQWiixPKYciyYDnaQEiZSkt-Aka_amnaEQIyRIB-fs5ughhM6ysLEfobbk2eK5q6_CiMzp61eCH1viPPb63IXpb7aJ1LVZtjRdR-WTl_Fb9SHMVDZ6oxlb-INgWT1WjvqwJl-hspZpgrn7nGL0-PiwnT8nsZfo8uZslOuMiJqzSFKACgKxmGVEVaFURUlOtQChe8jJTRlNalkKwEoAYwnJBgNZCMy4KGKObQ68L0cqgbTR6rV3b9q9IxgpRAs2Prs67z50JUW7czrf9YZKB4LkQPIPeBQeX9i4Eb1ay83ar_F5SIgfMcgAqB6CyxyyZ7DH3qfSQsq471v6X-AbpMHwf</recordid><startdate>20170220</startdate><enddate>20170220</enddate><creator>Tabatabaei, F. S.</creator><creator>Schinnerer, E.</creator><creator>Krause, M.</creator><creator>Dumas, G.</creator><creator>Meidt, S.</creator><creator>Damas-Segovia, A.</creator><creator>Beck, R.</creator><creator>Murphy, E. J.</creator><creator>Mulcahy, D. D.</creator><creator>Groves, B.</creator><creator>Bolatto, A.</creator><creator>Dale, D.</creator><creator>Galametz, M.</creator><creator>Sandstrom, K.</creator><creator>Boquien, M.</creator><creator>Calzetti, D.</creator><creator>Kennicutt, R. C.</creator><creator>Hunt, L. K.</creator><creator>Looze, I. De</creator><creator>Pellegrini, E. W.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5480-5686</orcidid><orcidid>https://orcid.org/0000-0001-7089-7325</orcidid><orcidid>https://orcid.org/0000-0002-9768-0246</orcidid><orcidid>https://orcid.org/0000-0002-0377-0970</orcidid><orcidid>https://orcid.org/0000-0002-3933-7677</orcidid><orcidid>https://orcid.org/0000-0002-6118-4048</orcidid><orcidid>https://orcid.org/0000-0002-5189-8004</orcidid><orcidid>https://orcid.org/0000-0001-9162-2371</orcidid><orcidid>https://orcid.org/0000-0002-0283-8689</orcidid><orcidid>https://orcid.org/0000-0002-5747-8510</orcidid><orcidid>https://orcid.org/0000-0002-4378-8534</orcidid><orcidid>https://orcid.org/0000-0002-9833-2948</orcidid></search><sort><creationdate>20170220</creationdate><title>The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies</title><author>Tabatabaei, F. S. ; Schinnerer, E. ; Krause, M. ; Dumas, G. ; Meidt, S. ; Damas-Segovia, A. ; Beck, R. ; Murphy, E. J. ; Mulcahy, D. D. ; Groves, B. ; Bolatto, A. ; Dale, D. ; Galametz, M. ; Sandstrom, K. ; Boquien, M. ; Calzetti, D. ; Kennicutt, R. C. ; Hunt, L. K. ; Looze, I. De ; Pellegrini, E. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-2bc133b3334d240ab3cab00d1ca36a59594aec11996629330e0276031d6c25683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aquatic birds</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BOLOMETERS</topic><topic>CALIBRATION</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>COSMIC RADIATION</topic><topic>Cosmic ray electrons</topic><topic>Cosmic rays</topic><topic>EMISSION</topic><topic>ENERGY SPECTRA</topic><topic>FEEDBACK</topic><topic>Galactic evolution</topic><topic>GALAXIES</topic><topic>galaxies: ISM</topic><topic>galaxies: star formation</topic><topic>Galaxy distribution</topic><topic>infrared: galaxies</topic><topic>LUMINOSITY</topic><topic>MAGNETIC FIELDS</topic><topic>MARINE SURVEYS</topic><topic>Markov chains</topic><topic>MARKOV PROCESS</topic><topic>MONOCHROMATIC RADIATION</topic><topic>MONTE CARLO METHOD</topic><topic>Radio</topic><topic>radio continuum: galaxies</topic><topic>RED SHIFT</topic><topic>Spectra</topic><topic>Spectral energy distribution</topic><topic>STAR EVOLUTION</topic><topic>Star formation</topic><topic>STARS</topic><topic>Stars & galaxies</topic><topic>surveys</topic><topic>Thermal emission</topic><topic>Tracers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabatabaei, F. S.</creatorcontrib><creatorcontrib>Schinnerer, E.</creatorcontrib><creatorcontrib>Krause, M.</creatorcontrib><creatorcontrib>Dumas, G.</creatorcontrib><creatorcontrib>Meidt, S.</creatorcontrib><creatorcontrib>Damas-Segovia, A.</creatorcontrib><creatorcontrib>Beck, R.</creatorcontrib><creatorcontrib>Murphy, E. J.</creatorcontrib><creatorcontrib>Mulcahy, D. D.</creatorcontrib><creatorcontrib>Groves, B.</creatorcontrib><creatorcontrib>Bolatto, A.</creatorcontrib><creatorcontrib>Dale, D.</creatorcontrib><creatorcontrib>Galametz, M.</creatorcontrib><creatorcontrib>Sandstrom, K.</creatorcontrib><creatorcontrib>Boquien, M.</creatorcontrib><creatorcontrib>Calzetti, D.</creatorcontrib><creatorcontrib>Kennicutt, R. C.</creatorcontrib><creatorcontrib>Hunt, L. K.</creatorcontrib><creatorcontrib>Looze, I. De</creatorcontrib><creatorcontrib>Pellegrini, E. W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tabatabaei, F. S.</au><au>Schinnerer, E.</au><au>Krause, M.</au><au>Dumas, G.</au><au>Meidt, S.</au><au>Damas-Segovia, A.</au><au>Beck, R.</au><au>Murphy, E. J.</au><au>Mulcahy, D. D.</au><au>Groves, B.</au><au>Bolatto, A.</au><au>Dale, D.</au><au>Galametz, M.</au><au>Sandstrom, K.</au><au>Boquien, M.</au><au>Calzetti, D.</au><au>Kennicutt, R. C.</au><au>Hunt, L. K.</au><au>Looze, I. De</au><au>Pellegrini, E. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-02-20</date><risdate>2017</risdate><volume>836</volume><issue>2</issue><spage>185</spage><pages>185-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index ( ) and the thermal fraction ( ) with mean values of for the total spectral index) and = (10 9)% at 1.4 GHz. The MRC luminosity changes over ∼3 orders of magnitude in the sample, MRC . The thermal emission is responsible for ∼23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/836/2/185</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5480-5686</orcidid><orcidid>https://orcid.org/0000-0001-7089-7325</orcidid><orcidid>https://orcid.org/0000-0002-9768-0246</orcidid><orcidid>https://orcid.org/0000-0002-0377-0970</orcidid><orcidid>https://orcid.org/0000-0002-3933-7677</orcidid><orcidid>https://orcid.org/0000-0002-6118-4048</orcidid><orcidid>https://orcid.org/0000-0002-5189-8004</orcidid><orcidid>https://orcid.org/0000-0001-9162-2371</orcidid><orcidid>https://orcid.org/0000-0002-0283-8689</orcidid><orcidid>https://orcid.org/0000-0002-5747-8510</orcidid><orcidid>https://orcid.org/0000-0002-4378-8534</orcidid><orcidid>https://orcid.org/0000-0002-9833-2948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-02, Vol.836 (2), p.185 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22869317 |
source | IOP Publishing Free Content |
subjects | Aquatic birds Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BOLOMETERS CALIBRATION COMPARATIVE EVALUATIONS COSMIC RADIATION Cosmic ray electrons Cosmic rays EMISSION ENERGY SPECTRA FEEDBACK Galactic evolution GALAXIES galaxies: ISM galaxies: star formation Galaxy distribution infrared: galaxies LUMINOSITY MAGNETIC FIELDS MARINE SURVEYS Markov chains MARKOV PROCESS MONOCHROMATIC RADIATION MONTE CARLO METHOD Radio radio continuum: galaxies RED SHIFT Spectra Spectral energy distribution STAR EVOLUTION Star formation STARS Stars & galaxies surveys Thermal emission Tracers |
title | The Radio Spectral Energy Distribution and Star-formation Rate Calibration in Galaxies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Radio%20Spectral%20Energy%20Distribution%20and%20Star-formation%20Rate%20Calibration%20in%20Galaxies&rft.jtitle=The%20Astrophysical%20journal&rft.au=Tabatabaei,%20F.%20S.&rft.date=2017-02-20&rft.volume=836&rft.issue=2&rft.spage=185&rft.pages=185-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/836/2/185&rft_dat=%3Cproquest_O3W%3E2365766543%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365766543&rft_id=info:pmid/&rfr_iscdi=true |