Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes

This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-03, Vol.838 (1), p.56
Hauptverfasser: MacLeod, Morgan, Antoni, Andrea, Murguia-Berthier, Ariadna, Macias, Phillip, Ramirez-Ruiz, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 56
container_title The Astrophysical journal
container_volume 838
creator MacLeod, Morgan
Antoni, Andrea
Murguia-Berthier, Ariadna
Macias, Phillip
Ramirez-Ruiz, Enrico
description This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is a three-dimensional, Cartesian geometry hydrodynamic simulation setup that includes the gravity of the primary and secondary stars and allows us to study the coefficients of drag and accretion experienced by the embedded object. Accretion and drag lead to a transformation of an embedded object and its orbit during a common envelope phase. We present two suites of simulations spanning a range of density gradients and Mach numbers-relevant for flow near the limb of a stellar envelope to the deep interior. In one suite, we adopt an ideal gas adiabatic exponent of , in the other, . We find that coefficients of drag rise in flows with steeper density gradients and that coefficients of drag and accretion are consistently higher in the more compressible, flow. We illustrate the impact of these newly derived coefficients by integrating the inspiral of a secondary object through the envelopes of ( ) and ( ) giants. In these examples, we find a relatively rapid initial inspiral because, near the stellar limb, dynamical friction drag is generated mainly from dense gas focused from deeper within the primary-star's envelope. This rapid initial inspiral timescale carries potential implications for the timescale of transients from early common envelope interaction.
doi_str_mv 10.3847/1538-4357/aa6117
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22869180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365869314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-9a17c22a9cad482e0ff9f22fbdf74490031136a6d76b2585638f0f48a84612ff3</originalsourceid><addsrcrecordid>eNp1kU1rFDEAhoMouFbvHgN6dGy-JpPxVtatFQo9bEu9hWw-2iwzyZhkrP0t_lkzbGkv7SkkPM_LS14APmL0lQrWHeOWiobRtjtWimPcvQKrx6fXYIUQYg2n3a-34F3O--VK-n4F_q3jOMYAN-GPHeJk4bUPBl7OIdjhG1xH65zX3oaSYXTwe1I3UFXgROtki6-iD1DBrR-nwTtvTVVCsX8LdDHBbZnNvQ838HSIdxmqFOfqXuz2Vte8zbizxlTlzpfbGrMtdhhUeqyS34M3Tg3Zfng4j8DV6eZyfdacX_z4uT45bzTraGl6hTtNiOq1MkwQi5zrHSFuZ1zHWI8QxZhyxU3Hd6QVLafCIceEEoxj4hw9Ap8OuTEXL7P2xepbHesX6CIJEbzHAj1RU4q_Z5uL3Mc5hVpMEsrbSlHMKoUOlE4x52SdnJIfVbqXGMllKLmsIpdV5GGoqnw-KD5OT5lq2ktRSSxbLieztPzyDPZi6n_AZaFC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365869314</pqid></control><display><type>article</type><title>Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes</title><source>IOP Publishing Free Content</source><creator>MacLeod, Morgan ; Antoni, Andrea ; Murguia-Berthier, Ariadna ; Macias, Phillip ; Ramirez-Ruiz, Enrico</creator><creatorcontrib>MacLeod, Morgan ; Antoni, Andrea ; Murguia-Berthier, Ariadna ; Macias, Phillip ; Ramirez-Ruiz, Enrico</creatorcontrib><description>This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is a three-dimensional, Cartesian geometry hydrodynamic simulation setup that includes the gravity of the primary and secondary stars and allows us to study the coefficients of drag and accretion experienced by the embedded object. Accretion and drag lead to a transformation of an embedded object and its orbit during a common envelope phase. We present two suites of simulations spanning a range of density gradients and Mach numbers-relevant for flow near the limb of a stellar envelope to the deep interior. In one suite, we adopt an ideal gas adiabatic exponent of , in the other, . We find that coefficients of drag rise in flows with steeper density gradients and that coefficients of drag and accretion are consistently higher in the more compressible, flow. We illustrate the impact of these newly derived coefficients by integrating the inspiral of a secondary object through the envelopes of ( ) and ( ) giants. In these examples, we find a relatively rapid initial inspiral because, near the stellar limb, dynamical friction drag is generated mainly from dense gas focused from deeper within the primary-star's envelope. This rapid initial inspiral timescale carries potential implications for the timescale of transients from early common envelope interaction.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa6117</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; binaries (including multiple): close ; Cartesian coordinates ; Coefficients ; Compressibility ; COMPRESSIBLE FLOW ; COMPUTERIZED SIMULATION ; DENSITY ; Density gradients ; Deposition ; Drag ; FRICTION ; Friction drag ; GRAVITATION ; HYDRODYNAMICS ; Ideal gas ; INTERACTIONS ; MACH NUMBER ; methods: numerical ; Scale height ; STARS ; stars: interiors ; Stellar envelopes ; Stellar winds ; THREE-DIMENSIONAL CALCULATIONS ; Time ; TRANSIENTS ; Wind tunnels</subject><ispartof>The Astrophysical journal, 2017-03, Vol.838 (1), p.56</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-9a17c22a9cad482e0ff9f22fbdf74490031136a6d76b2585638f0f48a84612ff3</citedby><cites>FETCH-LOGICAL-c473t-9a17c22a9cad482e0ff9f22fbdf74490031136a6d76b2585638f0f48a84612ff3</cites><orcidid>0000-0002-9946-4635 ; 0000-0002-1417-8024 ; 0000-0003-2558-3102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa6117/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27922,27923,38888,53865</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa6117$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22869180$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>MacLeod, Morgan</creatorcontrib><creatorcontrib>Antoni, Andrea</creatorcontrib><creatorcontrib>Murguia-Berthier, Ariadna</creatorcontrib><creatorcontrib>Macias, Phillip</creatorcontrib><creatorcontrib>Ramirez-Ruiz, Enrico</creatorcontrib><title>Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is a three-dimensional, Cartesian geometry hydrodynamic simulation setup that includes the gravity of the primary and secondary stars and allows us to study the coefficients of drag and accretion experienced by the embedded object. Accretion and drag lead to a transformation of an embedded object and its orbit during a common envelope phase. We present two suites of simulations spanning a range of density gradients and Mach numbers-relevant for flow near the limb of a stellar envelope to the deep interior. In one suite, we adopt an ideal gas adiabatic exponent of , in the other, . We find that coefficients of drag rise in flows with steeper density gradients and that coefficients of drag and accretion are consistently higher in the more compressible, flow. We illustrate the impact of these newly derived coefficients by integrating the inspiral of a secondary object through the envelopes of ( ) and ( ) giants. In these examples, we find a relatively rapid initial inspiral because, near the stellar limb, dynamical friction drag is generated mainly from dense gas focused from deeper within the primary-star's envelope. This rapid initial inspiral timescale carries potential implications for the timescale of transients from early common envelope interaction.</description><subject>Accretion</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>binaries (including multiple): close</subject><subject>Cartesian coordinates</subject><subject>Coefficients</subject><subject>Compressibility</subject><subject>COMPRESSIBLE FLOW</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DENSITY</subject><subject>Density gradients</subject><subject>Deposition</subject><subject>Drag</subject><subject>FRICTION</subject><subject>Friction drag</subject><subject>GRAVITATION</subject><subject>HYDRODYNAMICS</subject><subject>Ideal gas</subject><subject>INTERACTIONS</subject><subject>MACH NUMBER</subject><subject>methods: numerical</subject><subject>Scale height</subject><subject>STARS</subject><subject>stars: interiors</subject><subject>Stellar envelopes</subject><subject>Stellar winds</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>Time</subject><subject>TRANSIENTS</subject><subject>Wind tunnels</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rFDEAhoMouFbvHgN6dGy-JpPxVtatFQo9bEu9hWw-2iwzyZhkrP0t_lkzbGkv7SkkPM_LS14APmL0lQrWHeOWiobRtjtWimPcvQKrx6fXYIUQYg2n3a-34F3O--VK-n4F_q3jOMYAN-GPHeJk4bUPBl7OIdjhG1xH65zX3oaSYXTwe1I3UFXgROtki6-iD1DBrR-nwTtvTVVCsX8LdDHBbZnNvQ838HSIdxmqFOfqXuz2Vte8zbizxlTlzpfbGrMtdhhUeqyS34M3Tg3Zfng4j8DV6eZyfdacX_z4uT45bzTraGl6hTtNiOq1MkwQi5zrHSFuZ1zHWI8QxZhyxU3Hd6QVLafCIceEEoxj4hw9Ap8OuTEXL7P2xepbHesX6CIJEbzHAj1RU4q_Z5uL3Mc5hVpMEsrbSlHMKoUOlE4x52SdnJIfVbqXGMllKLmsIpdV5GGoqnw-KD5OT5lq2ktRSSxbLieztPzyDPZi6n_AZaFC</recordid><startdate>20170320</startdate><enddate>20170320</enddate><creator>MacLeod, Morgan</creator><creator>Antoni, Andrea</creator><creator>Murguia-Berthier, Ariadna</creator><creator>Macias, Phillip</creator><creator>Ramirez-Ruiz, Enrico</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9946-4635</orcidid><orcidid>https://orcid.org/0000-0002-1417-8024</orcidid><orcidid>https://orcid.org/0000-0003-2558-3102</orcidid></search><sort><creationdate>20170320</creationdate><title>Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes</title><author>MacLeod, Morgan ; Antoni, Andrea ; Murguia-Berthier, Ariadna ; Macias, Phillip ; Ramirez-Ruiz, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-9a17c22a9cad482e0ff9f22fbdf74490031136a6d76b2585638f0f48a84612ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accretion</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>binaries (including multiple): close</topic><topic>Cartesian coordinates</topic><topic>Coefficients</topic><topic>Compressibility</topic><topic>COMPRESSIBLE FLOW</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DENSITY</topic><topic>Density gradients</topic><topic>Deposition</topic><topic>Drag</topic><topic>FRICTION</topic><topic>Friction drag</topic><topic>GRAVITATION</topic><topic>HYDRODYNAMICS</topic><topic>Ideal gas</topic><topic>INTERACTIONS</topic><topic>MACH NUMBER</topic><topic>methods: numerical</topic><topic>Scale height</topic><topic>STARS</topic><topic>stars: interiors</topic><topic>Stellar envelopes</topic><topic>Stellar winds</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>Time</topic><topic>TRANSIENTS</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacLeod, Morgan</creatorcontrib><creatorcontrib>Antoni, Andrea</creatorcontrib><creatorcontrib>Murguia-Berthier, Ariadna</creatorcontrib><creatorcontrib>Macias, Phillip</creatorcontrib><creatorcontrib>Ramirez-Ruiz, Enrico</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MacLeod, Morgan</au><au>Antoni, Andrea</au><au>Murguia-Berthier, Ariadna</au><au>Macias, Phillip</au><au>Ramirez-Ruiz, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-03-20</date><risdate>2017</risdate><volume>838</volume><issue>1</issue><spage>56</spage><pages>56-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is a three-dimensional, Cartesian geometry hydrodynamic simulation setup that includes the gravity of the primary and secondary stars and allows us to study the coefficients of drag and accretion experienced by the embedded object. Accretion and drag lead to a transformation of an embedded object and its orbit during a common envelope phase. We present two suites of simulations spanning a range of density gradients and Mach numbers-relevant for flow near the limb of a stellar envelope to the deep interior. In one suite, we adopt an ideal gas adiabatic exponent of , in the other, . We find that coefficients of drag rise in flows with steeper density gradients and that coefficients of drag and accretion are consistently higher in the more compressible, flow. We illustrate the impact of these newly derived coefficients by integrating the inspiral of a secondary object through the envelopes of ( ) and ( ) giants. In these examples, we find a relatively rapid initial inspiral because, near the stellar limb, dynamical friction drag is generated mainly from dense gas focused from deeper within the primary-star's envelope. This rapid initial inspiral timescale carries potential implications for the timescale of transients from early common envelope interaction.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa6117</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9946-4635</orcidid><orcidid>https://orcid.org/0000-0002-1417-8024</orcidid><orcidid>https://orcid.org/0000-0003-2558-3102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-03, Vol.838 (1), p.56
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22869180
source IOP Publishing Free Content
subjects Accretion
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
binaries (including multiple): close
Cartesian coordinates
Coefficients
Compressibility
COMPRESSIBLE FLOW
COMPUTERIZED SIMULATION
DENSITY
Density gradients
Deposition
Drag
FRICTION
Friction drag
GRAVITATION
HYDRODYNAMICS
Ideal gas
INTERACTIONS
MACH NUMBER
methods: numerical
Scale height
STARS
stars: interiors
Stellar envelopes
Stellar winds
THREE-DIMENSIONAL CALCULATIONS
Time
TRANSIENTS
Wind tunnels
title Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Common%20Envelope%20Wind%20Tunnel:%20Coefficients%20of%20Drag%20and%20Accretion%20in%20a%20Simplified%20Context%20for%20Studying%20Flows%20around%20Objects%20Embedded%20within%20Stellar%20Envelopes&rft.jtitle=The%20Astrophysical%20journal&rft.au=MacLeod,%20Morgan&rft.date=2017-03-20&rft.volume=838&rft.issue=1&rft.spage=56&rft.pages=56-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa6117&rft_dat=%3Cproquest_O3W%3E2365869314%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365869314&rft_id=info:pmid/&rfr_iscdi=true