Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes
This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-03, Vol.838 (1), p.56 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | The Astrophysical journal |
container_volume | 838 |
creator | MacLeod, Morgan Antoni, Andrea Murguia-Berthier, Ariadna Macias, Phillip Ramirez-Ruiz, Enrico |
description | This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is a three-dimensional, Cartesian geometry hydrodynamic simulation setup that includes the gravity of the primary and secondary stars and allows us to study the coefficients of drag and accretion experienced by the embedded object. Accretion and drag lead to a transformation of an embedded object and its orbit during a common envelope phase. We present two suites of simulations spanning a range of density gradients and Mach numbers-relevant for flow near the limb of a stellar envelope to the deep interior. In one suite, we adopt an ideal gas adiabatic exponent of , in the other, . We find that coefficients of drag rise in flows with steeper density gradients and that coefficients of drag and accretion are consistently higher in the more compressible, flow. We illustrate the impact of these newly derived coefficients by integrating the inspiral of a secondary object through the envelopes of ( ) and ( ) giants. In these examples, we find a relatively rapid initial inspiral because, near the stellar limb, dynamical friction drag is generated mainly from dense gas focused from deeper within the primary-star's envelope. This rapid initial inspiral timescale carries potential implications for the timescale of transients from early common envelope interaction. |
doi_str_mv | 10.3847/1538-4357/aa6117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22869180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365869314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-9a17c22a9cad482e0ff9f22fbdf74490031136a6d76b2585638f0f48a84612ff3</originalsourceid><addsrcrecordid>eNp1kU1rFDEAhoMouFbvHgN6dGy-JpPxVtatFQo9bEu9hWw-2iwzyZhkrP0t_lkzbGkv7SkkPM_LS14APmL0lQrWHeOWiobRtjtWimPcvQKrx6fXYIUQYg2n3a-34F3O--VK-n4F_q3jOMYAN-GPHeJk4bUPBl7OIdjhG1xH65zX3oaSYXTwe1I3UFXgROtki6-iD1DBrR-nwTtvTVVCsX8LdDHBbZnNvQ838HSIdxmqFOfqXuz2Vte8zbizxlTlzpfbGrMtdhhUeqyS34M3Tg3Zfng4j8DV6eZyfdacX_z4uT45bzTraGl6hTtNiOq1MkwQi5zrHSFuZ1zHWI8QxZhyxU3Hd6QVLafCIceEEoxj4hw9Ap8OuTEXL7P2xepbHesX6CIJEbzHAj1RU4q_Z5uL3Mc5hVpMEsrbSlHMKoUOlE4x52SdnJIfVbqXGMllKLmsIpdV5GGoqnw-KD5OT5lq2ktRSSxbLieztPzyDPZi6n_AZaFC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365869314</pqid></control><display><type>article</type><title>Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes</title><source>IOP Publishing Free Content</source><creator>MacLeod, Morgan ; Antoni, Andrea ; Murguia-Berthier, Ariadna ; Macias, Phillip ; Ramirez-Ruiz, Enrico</creator><creatorcontrib>MacLeod, Morgan ; Antoni, Andrea ; Murguia-Berthier, Ariadna ; Macias, Phillip ; Ramirez-Ruiz, Enrico</creatorcontrib><description>This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is a three-dimensional, Cartesian geometry hydrodynamic simulation setup that includes the gravity of the primary and secondary stars and allows us to study the coefficients of drag and accretion experienced by the embedded object. Accretion and drag lead to a transformation of an embedded object and its orbit during a common envelope phase. We present two suites of simulations spanning a range of density gradients and Mach numbers-relevant for flow near the limb of a stellar envelope to the deep interior. In one suite, we adopt an ideal gas adiabatic exponent of , in the other, . We find that coefficients of drag rise in flows with steeper density gradients and that coefficients of drag and accretion are consistently higher in the more compressible, flow. We illustrate the impact of these newly derived coefficients by integrating the inspiral of a secondary object through the envelopes of ( ) and ( ) giants. In these examples, we find a relatively rapid initial inspiral because, near the stellar limb, dynamical friction drag is generated mainly from dense gas focused from deeper within the primary-star's envelope. This rapid initial inspiral timescale carries potential implications for the timescale of transients from early common envelope interaction.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa6117</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; binaries (including multiple): close ; Cartesian coordinates ; Coefficients ; Compressibility ; COMPRESSIBLE FLOW ; COMPUTERIZED SIMULATION ; DENSITY ; Density gradients ; Deposition ; Drag ; FRICTION ; Friction drag ; GRAVITATION ; HYDRODYNAMICS ; Ideal gas ; INTERACTIONS ; MACH NUMBER ; methods: numerical ; Scale height ; STARS ; stars: interiors ; Stellar envelopes ; Stellar winds ; THREE-DIMENSIONAL CALCULATIONS ; Time ; TRANSIENTS ; Wind tunnels</subject><ispartof>The Astrophysical journal, 2017-03, Vol.838 (1), p.56</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 20, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-9a17c22a9cad482e0ff9f22fbdf74490031136a6d76b2585638f0f48a84612ff3</citedby><cites>FETCH-LOGICAL-c473t-9a17c22a9cad482e0ff9f22fbdf74490031136a6d76b2585638f0f48a84612ff3</cites><orcidid>0000-0002-9946-4635 ; 0000-0002-1417-8024 ; 0000-0003-2558-3102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa6117/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27922,27923,38888,53865</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa6117$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22869180$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>MacLeod, Morgan</creatorcontrib><creatorcontrib>Antoni, Andrea</creatorcontrib><creatorcontrib>Murguia-Berthier, Ariadna</creatorcontrib><creatorcontrib>Macias, Phillip</creatorcontrib><creatorcontrib>Ramirez-Ruiz, Enrico</creatorcontrib><title>Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is a three-dimensional, Cartesian geometry hydrodynamic simulation setup that includes the gravity of the primary and secondary stars and allows us to study the coefficients of drag and accretion experienced by the embedded object. Accretion and drag lead to a transformation of an embedded object and its orbit during a common envelope phase. We present two suites of simulations spanning a range of density gradients and Mach numbers-relevant for flow near the limb of a stellar envelope to the deep interior. In one suite, we adopt an ideal gas adiabatic exponent of , in the other, . We find that coefficients of drag rise in flows with steeper density gradients and that coefficients of drag and accretion are consistently higher in the more compressible, flow. We illustrate the impact of these newly derived coefficients by integrating the inspiral of a secondary object through the envelopes of ( ) and ( ) giants. In these examples, we find a relatively rapid initial inspiral because, near the stellar limb, dynamical friction drag is generated mainly from dense gas focused from deeper within the primary-star's envelope. This rapid initial inspiral timescale carries potential implications for the timescale of transients from early common envelope interaction.</description><subject>Accretion</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>binaries (including multiple): close</subject><subject>Cartesian coordinates</subject><subject>Coefficients</subject><subject>Compressibility</subject><subject>COMPRESSIBLE FLOW</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DENSITY</subject><subject>Density gradients</subject><subject>Deposition</subject><subject>Drag</subject><subject>FRICTION</subject><subject>Friction drag</subject><subject>GRAVITATION</subject><subject>HYDRODYNAMICS</subject><subject>Ideal gas</subject><subject>INTERACTIONS</subject><subject>MACH NUMBER</subject><subject>methods: numerical</subject><subject>Scale height</subject><subject>STARS</subject><subject>stars: interiors</subject><subject>Stellar envelopes</subject><subject>Stellar winds</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>Time</subject><subject>TRANSIENTS</subject><subject>Wind tunnels</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rFDEAhoMouFbvHgN6dGy-JpPxVtatFQo9bEu9hWw-2iwzyZhkrP0t_lkzbGkv7SkkPM_LS14APmL0lQrWHeOWiobRtjtWimPcvQKrx6fXYIUQYg2n3a-34F3O--VK-n4F_q3jOMYAN-GPHeJk4bUPBl7OIdjhG1xH65zX3oaSYXTwe1I3UFXgROtki6-iD1DBrR-nwTtvTVVCsX8LdDHBbZnNvQ838HSIdxmqFOfqXuz2Vte8zbizxlTlzpfbGrMtdhhUeqyS34M3Tg3Zfng4j8DV6eZyfdacX_z4uT45bzTraGl6hTtNiOq1MkwQi5zrHSFuZ1zHWI8QxZhyxU3Hd6QVLafCIceEEoxj4hw9Ap8OuTEXL7P2xepbHesX6CIJEbzHAj1RU4q_Z5uL3Mc5hVpMEsrbSlHMKoUOlE4x52SdnJIfVbqXGMllKLmsIpdV5GGoqnw-KD5OT5lq2ktRSSxbLieztPzyDPZi6n_AZaFC</recordid><startdate>20170320</startdate><enddate>20170320</enddate><creator>MacLeod, Morgan</creator><creator>Antoni, Andrea</creator><creator>Murguia-Berthier, Ariadna</creator><creator>Macias, Phillip</creator><creator>Ramirez-Ruiz, Enrico</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9946-4635</orcidid><orcidid>https://orcid.org/0000-0002-1417-8024</orcidid><orcidid>https://orcid.org/0000-0003-2558-3102</orcidid></search><sort><creationdate>20170320</creationdate><title>Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes</title><author>MacLeod, Morgan ; Antoni, Andrea ; Murguia-Berthier, Ariadna ; Macias, Phillip ; Ramirez-Ruiz, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-9a17c22a9cad482e0ff9f22fbdf74490031136a6d76b2585638f0f48a84612ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accretion</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>binaries (including multiple): close</topic><topic>Cartesian coordinates</topic><topic>Coefficients</topic><topic>Compressibility</topic><topic>COMPRESSIBLE FLOW</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DENSITY</topic><topic>Density gradients</topic><topic>Deposition</topic><topic>Drag</topic><topic>FRICTION</topic><topic>Friction drag</topic><topic>GRAVITATION</topic><topic>HYDRODYNAMICS</topic><topic>Ideal gas</topic><topic>INTERACTIONS</topic><topic>MACH NUMBER</topic><topic>methods: numerical</topic><topic>Scale height</topic><topic>STARS</topic><topic>stars: interiors</topic><topic>Stellar envelopes</topic><topic>Stellar winds</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>Time</topic><topic>TRANSIENTS</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacLeod, Morgan</creatorcontrib><creatorcontrib>Antoni, Andrea</creatorcontrib><creatorcontrib>Murguia-Berthier, Ariadna</creatorcontrib><creatorcontrib>Macias, Phillip</creatorcontrib><creatorcontrib>Ramirez-Ruiz, Enrico</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MacLeod, Morgan</au><au>Antoni, Andrea</au><au>Murguia-Berthier, Ariadna</au><au>Macias, Phillip</au><au>Ramirez-Ruiz, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-03-20</date><risdate>2017</risdate><volume>838</volume><issue>1</issue><spage>56</spage><pages>56-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>This paper examines the properties of flows around objects embedded within common envelopes in the simplified context of a "wind tunnel." We establish characteristic relationships between key common envelope flow parameters like the Mach number and density scale height. Our wind tunnel is a three-dimensional, Cartesian geometry hydrodynamic simulation setup that includes the gravity of the primary and secondary stars and allows us to study the coefficients of drag and accretion experienced by the embedded object. Accretion and drag lead to a transformation of an embedded object and its orbit during a common envelope phase. We present two suites of simulations spanning a range of density gradients and Mach numbers-relevant for flow near the limb of a stellar envelope to the deep interior. In one suite, we adopt an ideal gas adiabatic exponent of , in the other, . We find that coefficients of drag rise in flows with steeper density gradients and that coefficients of drag and accretion are consistently higher in the more compressible, flow. We illustrate the impact of these newly derived coefficients by integrating the inspiral of a secondary object through the envelopes of ( ) and ( ) giants. In these examples, we find a relatively rapid initial inspiral because, near the stellar limb, dynamical friction drag is generated mainly from dense gas focused from deeper within the primary-star's envelope. This rapid initial inspiral timescale carries potential implications for the timescale of transients from early common envelope interaction.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa6117</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9946-4635</orcidid><orcidid>https://orcid.org/0000-0002-1417-8024</orcidid><orcidid>https://orcid.org/0000-0003-2558-3102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-03, Vol.838 (1), p.56 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22869180 |
source | IOP Publishing Free Content |
subjects | Accretion Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY binaries (including multiple): close Cartesian coordinates Coefficients Compressibility COMPRESSIBLE FLOW COMPUTERIZED SIMULATION DENSITY Density gradients Deposition Drag FRICTION Friction drag GRAVITATION HYDRODYNAMICS Ideal gas INTERACTIONS MACH NUMBER methods: numerical Scale height STARS stars: interiors Stellar envelopes Stellar winds THREE-DIMENSIONAL CALCULATIONS Time TRANSIENTS Wind tunnels |
title | Common Envelope Wind Tunnel: Coefficients of Drag and Accretion in a Simplified Context for Studying Flows around Objects Embedded within Stellar Envelopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Common%20Envelope%20Wind%20Tunnel:%20Coefficients%20of%20Drag%20and%20Accretion%20in%20a%20Simplified%20Context%20for%20Studying%20Flows%20around%20Objects%20Embedded%20within%20Stellar%20Envelopes&rft.jtitle=The%20Astrophysical%20journal&rft.au=MacLeod,%20Morgan&rft.date=2017-03-20&rft.volume=838&rft.issue=1&rft.spage=56&rft.pages=56-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa6117&rft_dat=%3Cproquest_O3W%3E2365869314%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365869314&rft_id=info:pmid/&rfr_iscdi=true |