HAT-P-65b AND HAT-P-66b: TWO TRANSITING INFLATED HOT JUPITERS AND OBSERVATIONAL EVIDENCE FOR THE REINFLATION OF CLOSE-IN GIANT PLANETS

We present the discovery of the transiting exoplanets HAT-P-65b and HAT-P-66b, with orbital periods of and days, masses of and , and inflated radii of and , respectively. They orbit moderately bright ( and ) stars of mass and . The stars are at the main-sequence turnoff. While it is well known that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2016-12, Vol.152 (6), p.182
Hauptverfasser: Hartman, J. D., Bakos, G. Á., Bhatti, W., Penev, K., Bieryla, A., Latham, D. W., Kovács, G., Torres, G., Csubry, Z., Val-Borro, M. de, Buchhave, L., Kovács, T., Quinn, S., Howard, A. W., Isaacson, H., Fulton, B. J., Everett, M. E., Esquerdo, G., Béky, B., Szklenar, T., Falco, E., Santerne, A., Boisse, I., Hébrard, G., Burrows, A., Lázár, J., Papp, I., Sári, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the discovery of the transiting exoplanets HAT-P-65b and HAT-P-66b, with orbital periods of and days, masses of and , and inflated radii of and , respectively. They orbit moderately bright ( and ) stars of mass and . The stars are at the main-sequence turnoff. While it is well known that the radii of close-in giant planets are correlated with their equilibrium temperatures, whether or not the radii of planets increase in time as their hosts evolve and become more luminous is an open question. Looking at the broader sample of well-characterized close-in transiting giant planets, we find that there is a statistically significant correlation between planetary radii and the fractional ages of their host stars, with a false-alarm probability of only 0.0041%. We find that the correlation between the radii of planets and the fractional ages of their hosts is fully explained by the known correlation between planetary radii and their present-day equilibrium temperatures; however, if the zero-age main-sequence equilibrium temperature is used in place of the present-day equilibrium temperature, then a correlation with age must also be included to explain the planetary radii. This suggests that, after contracting during the pre-main-sequence, close-in giant planets are reinflated over time due to the increasing level of irradiation received from their host stars. Prior theoretical work indicates that such a dynamic response to irradiation requires a significant fraction of the incident energy to be deposited deep within the planetary interiors.
ISSN:0004-6256
1538-3881
1538-3881
DOI:10.3847/0004-6256/152/6/182