Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation

Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2017-12, Vol.48 (6), p.2891-2901
Hauptverfasser: Jokiaho, T., Laitinen, A., Santa-aho, S., Isakov, M., Peura, P., Saarinen, T., Lehtovaara, A., Vippola, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2901
container_issue 6
container_start_page 2891
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 48
creator Jokiaho, T.
Laitinen, A.
Santa-aho, S.
Isakov, M.
Peura, P.
Saarinen, T.
Lehtovaara, A.
Vippola, M.
description Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.
doi_str_mv 10.1007/s11663-017-1090-x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22856072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965044298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7968b80e0a8c93f38f6a4c42bab9f6d33ddb528a07e968cd6248c6a6dd31db823</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhosoOKc_wFvAczVp2jTxJsU5YSLoPIc0-bp1tM1MUtn89XbWwy6e8h2e5yU8UXRN8C3BOL_zhDBGY0zymGCB491JNCFZSmMiCDsdbpzTOGMkO48uvN9gjJkQdBKti7VySgdw9bcKte2QrdCsUS2gog9oDuprj94DQHOPXqyBpu5WB2QJ7RacCr0DNK99sG6PVGfQG_ja9KoZHAfeo5l17e_uZXRWqcbD1d87jT5mj8tiHi9en56Lh0WsaZqGOBeMlxwDVlwLWlFeMZXqNClVKSpmKDWmzBKucA4DqQ1LUq6ZYsZQYkqe0Gl0M-5aH2rpdR1Ar7XtOtBBJgnPGM6PqK2znz34IDe2d93wMUkEy3CaJoIPFBkp7az3Diq5dXWr3F4SLA_Z5ZhdDtnlIbvcDU4yOn5guxW4o-V_pR9ZKoXy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965044298</pqid></control><display><type>article</type><title>Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation</title><source>Springer Nature - Complete Springer Journals</source><creator>Jokiaho, T. ; Laitinen, A. ; Santa-aho, S. ; Isakov, M. ; Peura, P. ; Saarinen, T. ; Lehtovaara, A. ; Vippola, M.</creator><creatorcontrib>Jokiaho, T. ; Laitinen, A. ; Santa-aho, S. ; Isakov, M. ; Peura, P. ; Saarinen, T. ; Lehtovaara, A. ; Vippola, M.</creatorcontrib><description>Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-017-1090-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; COMPUTERIZED SIMULATION ; CUTTING ; FINITE ELEMENT METHOD ; Flame cutting ; FLAMES ; HARDNESS ; HEAT AFFECTED ZONE ; MATERIALS SCIENCE ; Metallic Materials ; Microstructural analysis ; MICROSTRUCTURE ; Modelling ; Nanotechnology ; OXYGEN ; PLATES ; Residual stress ; RESIDUAL STRESSES ; Steel plates ; STEELS ; Structural Materials ; Surfaces and Interfaces ; TEMPERATURE GRADIENTS ; Thin Films ; X-RAY DIFFRACTION</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2017-12, Vol.48 (6), p.2891-2901</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2017</rights><rights>Metallurgical and Materials Transactions B is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7968b80e0a8c93f38f6a4c42bab9f6d33ddb528a07e968cd6248c6a6dd31db823</citedby><cites>FETCH-LOGICAL-c344t-7968b80e0a8c93f38f6a4c42bab9f6d33ddb528a07e968cd6248c6a6dd31db823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-017-1090-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-017-1090-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22856072$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jokiaho, T.</creatorcontrib><creatorcontrib>Laitinen, A.</creatorcontrib><creatorcontrib>Santa-aho, S.</creatorcontrib><creatorcontrib>Isakov, M.</creatorcontrib><creatorcontrib>Peura, P.</creatorcontrib><creatorcontrib>Saarinen, T.</creatorcontrib><creatorcontrib>Lehtovaara, A.</creatorcontrib><creatorcontrib>Vippola, M.</creatorcontrib><title>Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CUTTING</subject><subject>FINITE ELEMENT METHOD</subject><subject>Flame cutting</subject><subject>FLAMES</subject><subject>HARDNESS</subject><subject>HEAT AFFECTED ZONE</subject><subject>MATERIALS SCIENCE</subject><subject>Metallic Materials</subject><subject>Microstructural analysis</subject><subject>MICROSTRUCTURE</subject><subject>Modelling</subject><subject>Nanotechnology</subject><subject>OXYGEN</subject><subject>PLATES</subject><subject>Residual stress</subject><subject>RESIDUAL STRESSES</subject><subject>Steel plates</subject><subject>STEELS</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>TEMPERATURE GRADIENTS</subject><subject>Thin Films</subject><subject>X-RAY DIFFRACTION</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLwzAYhosoOKc_wFvAczVp2jTxJsU5YSLoPIc0-bp1tM1MUtn89XbWwy6e8h2e5yU8UXRN8C3BOL_zhDBGY0zymGCB491JNCFZSmMiCDsdbpzTOGMkO48uvN9gjJkQdBKti7VySgdw9bcKte2QrdCsUS2gog9oDuprj94DQHOPXqyBpu5WB2QJ7RacCr0DNK99sG6PVGfQG_ja9KoZHAfeo5l17e_uZXRWqcbD1d87jT5mj8tiHi9en56Lh0WsaZqGOBeMlxwDVlwLWlFeMZXqNClVKSpmKDWmzBKucA4DqQ1LUq6ZYsZQYkqe0Gl0M-5aH2rpdR1Ar7XtOtBBJgnPGM6PqK2znz34IDe2d93wMUkEy3CaJoIPFBkp7az3Diq5dXWr3F4SLA_Z5ZhdDtnlIbvcDU4yOn5guxW4o-V_pR9ZKoXy</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Jokiaho, T.</creator><creator>Laitinen, A.</creator><creator>Santa-aho, S.</creator><creator>Isakov, M.</creator><creator>Peura, P.</creator><creator>Saarinen, T.</creator><creator>Lehtovaara, A.</creator><creator>Vippola, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20171201</creationdate><title>Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation</title><author>Jokiaho, T. ; Laitinen, A. ; Santa-aho, S. ; Isakov, M. ; Peura, P. ; Saarinen, T. ; Lehtovaara, A. ; Vippola, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7968b80e0a8c93f38f6a4c42bab9f6d33ddb528a07e968cd6248c6a6dd31db823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CUTTING</topic><topic>FINITE ELEMENT METHOD</topic><topic>Flame cutting</topic><topic>FLAMES</topic><topic>HARDNESS</topic><topic>HEAT AFFECTED ZONE</topic><topic>MATERIALS SCIENCE</topic><topic>Metallic Materials</topic><topic>Microstructural analysis</topic><topic>MICROSTRUCTURE</topic><topic>Modelling</topic><topic>Nanotechnology</topic><topic>OXYGEN</topic><topic>PLATES</topic><topic>Residual stress</topic><topic>RESIDUAL STRESSES</topic><topic>Steel plates</topic><topic>STEELS</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>TEMPERATURE GRADIENTS</topic><topic>Thin Films</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jokiaho, T.</creatorcontrib><creatorcontrib>Laitinen, A.</creatorcontrib><creatorcontrib>Santa-aho, S.</creatorcontrib><creatorcontrib>Isakov, M.</creatorcontrib><creatorcontrib>Peura, P.</creatorcontrib><creatorcontrib>Saarinen, T.</creatorcontrib><creatorcontrib>Lehtovaara, A.</creatorcontrib><creatorcontrib>Vippola, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jokiaho, T.</au><au>Laitinen, A.</au><au>Santa-aho, S.</au><au>Isakov, M.</au><au>Peura, P.</au><au>Saarinen, T.</au><au>Lehtovaara, A.</au><au>Vippola, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>48</volume><issue>6</issue><spage>2891</spage><epage>2901</epage><pages>2891-2901</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-017-1090-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2017-12, Vol.48 (6), p.2891-2901
issn 1073-5615
1543-1916
language eng
recordid cdi_osti_scitechconnect_22856072
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Computer simulation
COMPUTERIZED SIMULATION
CUTTING
FINITE ELEMENT METHOD
Flame cutting
FLAMES
HARDNESS
HEAT AFFECTED ZONE
MATERIALS SCIENCE
Metallic Materials
Microstructural analysis
MICROSTRUCTURE
Modelling
Nanotechnology
OXYGEN
PLATES
Residual stress
RESIDUAL STRESSES
Steel plates
STEELS
Structural Materials
Surfaces and Interfaces
TEMPERATURE GRADIENTS
Thin Films
X-RAY DIFFRACTION
title Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A47%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Flame%20Cut%20Heavy%20Steel:%20Modeling%20of%20Temperature%20History%20and%20Residual%20Stress%20Formation&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Jokiaho,%20T.&rft.date=2017-12-01&rft.volume=48&rft.issue=6&rft.spage=2891&rft.epage=2901&rft.pages=2891-2901&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-017-1090-x&rft_dat=%3Cproquest_osti_%3E1965044298%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965044298&rft_id=info:pmid/&rfr_iscdi=true