Spinor solitons and their PT-symmetric offspring

Although the spinor field in (1+1) dimensions has the right structure to model a dispersive bimodal system with gain and loss, the plain addition of gain to one component of the field and loss to the other one results in an unstable dispersion relation. In this paper, we advocate a different recipe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2019-04, Vol.403, p.198-223
Hauptverfasser: Alexeeva, N.V., Barashenkov, I.V., Saxena, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue
container_start_page 198
container_title Annals of physics
container_volume 403
creator Alexeeva, N.V.
Barashenkov, I.V.
Saxena, A.
description Although the spinor field in (1+1) dimensions has the right structure to model a dispersive bimodal system with gain and loss, the plain addition of gain to one component of the field and loss to the other one results in an unstable dispersion relation. In this paper, we advocate a different recipe for the PT-symmetric extension of spinor models — the recipe that does not produce instability of the linear Dirac equation. Having exemplified the physical origins of the P- and T-breaking terms, we consider the extensions of three U(1)-invariant spinor models with cubic nonlinearity. Of these, the PT-symmetric extension of the Thirring model is shown to be completely integrable and possess infinitely many conserved quantities. The PT-symmetric Gross–Neveu equation conserves energy and momentum but does not conserve charge. The third model is introduced for the purpose of comparison with the previous two; its PT-symmetric extension has no conservation laws at all. Despite this dramatic difference in the integrability and conservation properties, all three PT-symmetric models are shown to have exact soliton solutions. Similar to the solitons of the extended Thirring and Gross–Neveu equations, the solitons of the new model are found to be stable — except for a narrow band of frequencies adjacent to the soliton existence boundary. The persistence under the P- and T-breaking perturbations as well as the prevalence of stability highlights a remarkable sturdiness of spinor solitons in (1+1) dimensions.
doi_str_mv 10.1016/j.aop.2018.11.010
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22852373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491618302951</els_id><sourcerecordid>S0003491618302951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-50d433e32a650686369383b07231bd221b3398f0ba4611b400282e7f6805edde3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wN2A6xnfy5ukGVxJ8QsKClZwF2aSjE1pJyUJgv_eGera1d3ce7gcxq4RKgSUt9uqDYeKA6oKsQKEEzZDaGQJJD5P2QwAqKwblOfsIqUtAGIt1IzB-8EPIRYp7HwOQyrawRZ543ws3tZl-tnvXY7eFKHv0yH64euSnfXtLrmrv5yzj8eH9fK5XL0-vSzvV6UhLnIpwNZEjngrBUglSTakqIMFJ-ws59gRNaqHrq0lYlcDcMXdopcKhLPW0ZzdHLkhZa-T8dmZjQnD4EzWnCvBaUFjC48tE0NK0fV6PLlv449G0JMYvdWjGD2J0Yh6FDNu7o4bN97_9i5OdDcYZ32c4Db4f9a_6iFo8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spinor solitons and their PT-symmetric offspring</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Alexeeva, N.V. ; Barashenkov, I.V. ; Saxena, A.</creator><creatorcontrib>Alexeeva, N.V. ; Barashenkov, I.V. ; Saxena, A.</creatorcontrib><description>Although the spinor field in (1+1) dimensions has the right structure to model a dispersive bimodal system with gain and loss, the plain addition of gain to one component of the field and loss to the other one results in an unstable dispersion relation. In this paper, we advocate a different recipe for the PT-symmetric extension of spinor models — the recipe that does not produce instability of the linear Dirac equation. Having exemplified the physical origins of the P- and T-breaking terms, we consider the extensions of three U(1)-invariant spinor models with cubic nonlinearity. Of these, the PT-symmetric extension of the Thirring model is shown to be completely integrable and possess infinitely many conserved quantities. The PT-symmetric Gross–Neveu equation conserves energy and momentum but does not conserve charge. The third model is introduced for the purpose of comparison with the previous two; its PT-symmetric extension has no conservation laws at all. Despite this dramatic difference in the integrability and conservation properties, all three PT-symmetric models are shown to have exact soliton solutions. Similar to the solitons of the extended Thirring and Gross–Neveu equations, the solitons of the new model are found to be stable — except for a narrow band of frequencies adjacent to the soliton existence boundary. The persistence under the P- and T-breaking perturbations as well as the prevalence of stability highlights a remarkable sturdiness of spinor solitons in (1+1) dimensions.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2018.11.010</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>CONSERVATION LAWS ; DIRAC EQUATION ; DISPERSION RELATIONS ; DISTURBANCES ; EXACT SOLUTIONS ; INTEGRABILITY ; NONLINEAR PROBLEMS ; PARITY ; Parity-time symmetry ; PERTURBATION THEORY ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; SOLITONS ; SPINOR FIELDS ; Spinor solitons ; Stability ; SYMMETRY ; THIRRING MODEL</subject><ispartof>Annals of physics, 2019-04, Vol.403, p.198-223</ispartof><rights>2018 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-50d433e32a650686369383b07231bd221b3398f0ba4611b400282e7f6805edde3</citedby><cites>FETCH-LOGICAL-c325t-50d433e32a650686369383b07231bd221b3398f0ba4611b400282e7f6805edde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2018.11.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22852373$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexeeva, N.V.</creatorcontrib><creatorcontrib>Barashenkov, I.V.</creatorcontrib><creatorcontrib>Saxena, A.</creatorcontrib><title>Spinor solitons and their PT-symmetric offspring</title><title>Annals of physics</title><description>Although the spinor field in (1+1) dimensions has the right structure to model a dispersive bimodal system with gain and loss, the plain addition of gain to one component of the field and loss to the other one results in an unstable dispersion relation. In this paper, we advocate a different recipe for the PT-symmetric extension of spinor models — the recipe that does not produce instability of the linear Dirac equation. Having exemplified the physical origins of the P- and T-breaking terms, we consider the extensions of three U(1)-invariant spinor models with cubic nonlinearity. Of these, the PT-symmetric extension of the Thirring model is shown to be completely integrable and possess infinitely many conserved quantities. The PT-symmetric Gross–Neveu equation conserves energy and momentum but does not conserve charge. The third model is introduced for the purpose of comparison with the previous two; its PT-symmetric extension has no conservation laws at all. Despite this dramatic difference in the integrability and conservation properties, all three PT-symmetric models are shown to have exact soliton solutions. Similar to the solitons of the extended Thirring and Gross–Neveu equations, the solitons of the new model are found to be stable — except for a narrow band of frequencies adjacent to the soliton existence boundary. The persistence under the P- and T-breaking perturbations as well as the prevalence of stability highlights a remarkable sturdiness of spinor solitons in (1+1) dimensions.</description><subject>CONSERVATION LAWS</subject><subject>DIRAC EQUATION</subject><subject>DISPERSION RELATIONS</subject><subject>DISTURBANCES</subject><subject>EXACT SOLUTIONS</subject><subject>INTEGRABILITY</subject><subject>NONLINEAR PROBLEMS</subject><subject>PARITY</subject><subject>Parity-time symmetry</subject><subject>PERTURBATION THEORY</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>SOLITONS</subject><subject>SPINOR FIELDS</subject><subject>Spinor solitons</subject><subject>Stability</subject><subject>SYMMETRY</subject><subject>THIRRING MODEL</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs_wN2A6xnfy5ukGVxJ8QsKClZwF2aSjE1pJyUJgv_eGera1d3ce7gcxq4RKgSUt9uqDYeKA6oKsQKEEzZDaGQJJD5P2QwAqKwblOfsIqUtAGIt1IzB-8EPIRYp7HwOQyrawRZ543ws3tZl-tnvXY7eFKHv0yH64euSnfXtLrmrv5yzj8eH9fK5XL0-vSzvV6UhLnIpwNZEjngrBUglSTakqIMFJ-ws59gRNaqHrq0lYlcDcMXdopcKhLPW0ZzdHLkhZa-T8dmZjQnD4EzWnCvBaUFjC48tE0NK0fV6PLlv449G0JMYvdWjGD2J0Yh6FDNu7o4bN97_9i5OdDcYZ32c4Db4f9a_6iFo8w</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Alexeeva, N.V.</creator><creator>Barashenkov, I.V.</creator><creator>Saxena, A.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190401</creationdate><title>Spinor solitons and their PT-symmetric offspring</title><author>Alexeeva, N.V. ; Barashenkov, I.V. ; Saxena, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-50d433e32a650686369383b07231bd221b3398f0ba4611b400282e7f6805edde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONSERVATION LAWS</topic><topic>DIRAC EQUATION</topic><topic>DISPERSION RELATIONS</topic><topic>DISTURBANCES</topic><topic>EXACT SOLUTIONS</topic><topic>INTEGRABILITY</topic><topic>NONLINEAR PROBLEMS</topic><topic>PARITY</topic><topic>Parity-time symmetry</topic><topic>PERTURBATION THEORY</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>SOLITONS</topic><topic>SPINOR FIELDS</topic><topic>Spinor solitons</topic><topic>Stability</topic><topic>SYMMETRY</topic><topic>THIRRING MODEL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexeeva, N.V.</creatorcontrib><creatorcontrib>Barashenkov, I.V.</creatorcontrib><creatorcontrib>Saxena, A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexeeva, N.V.</au><au>Barashenkov, I.V.</au><au>Saxena, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinor solitons and their PT-symmetric offspring</atitle><jtitle>Annals of physics</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>403</volume><spage>198</spage><epage>223</epage><pages>198-223</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><abstract>Although the spinor field in (1+1) dimensions has the right structure to model a dispersive bimodal system with gain and loss, the plain addition of gain to one component of the field and loss to the other one results in an unstable dispersion relation. In this paper, we advocate a different recipe for the PT-symmetric extension of spinor models — the recipe that does not produce instability of the linear Dirac equation. Having exemplified the physical origins of the P- and T-breaking terms, we consider the extensions of three U(1)-invariant spinor models with cubic nonlinearity. Of these, the PT-symmetric extension of the Thirring model is shown to be completely integrable and possess infinitely many conserved quantities. The PT-symmetric Gross–Neveu equation conserves energy and momentum but does not conserve charge. The third model is introduced for the purpose of comparison with the previous two; its PT-symmetric extension has no conservation laws at all. Despite this dramatic difference in the integrability and conservation properties, all three PT-symmetric models are shown to have exact soliton solutions. Similar to the solitons of the extended Thirring and Gross–Neveu equations, the solitons of the new model are found to be stable — except for a narrow band of frequencies adjacent to the soliton existence boundary. The persistence under the P- and T-breaking perturbations as well as the prevalence of stability highlights a remarkable sturdiness of spinor solitons in (1+1) dimensions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2018.11.010</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2019-04, Vol.403, p.198-223
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_22852373
source Elsevier ScienceDirect Journals Complete
subjects CONSERVATION LAWS
DIRAC EQUATION
DISPERSION RELATIONS
DISTURBANCES
EXACT SOLUTIONS
INTEGRABILITY
NONLINEAR PROBLEMS
PARITY
Parity-time symmetry
PERTURBATION THEORY
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
SOLITONS
SPINOR FIELDS
Spinor solitons
Stability
SYMMETRY
THIRRING MODEL
title Spinor solitons and their PT-symmetric offspring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinor%20solitons%20and%20their%20PT-symmetric%20offspring&rft.jtitle=Annals%20of%20physics&rft.au=Alexeeva,%20N.V.&rft.date=2019-04-01&rft.volume=403&rft.spage=198&rft.epage=223&rft.pages=198-223&rft.issn=0003-4916&rft.eissn=1096-035X&rft_id=info:doi/10.1016/j.aop.2018.11.010&rft_dat=%3Celsevier_osti_%3ES0003491618302951%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0003491618302951&rfr_iscdi=true