Energy Principles of Scientific Breakeven in an Inertial Fusion Experiment

Fusion "scientific breakeven" (i.e., unity target gain G_{target}, total fusion energy out > laser energy input) has been achieved for the first time (here, G_{target}∼1.5). This Letter reports on the physics principles of the design changes that led to the first controlled fusion exper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-02, Vol.132 (6), p.065103, Article 065103
Hauptverfasser: Hurricane, O A, Callahan, D A, Casey, D T, Christopherson, A R, Kritcher, A L, Landen, O L, Maclaren, S A, Nora, R, Patel, P K, Ralph, J, Schlossberg, D, Springer, P T, Young, C V, Zylstra, A B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fusion "scientific breakeven" (i.e., unity target gain G_{target}, total fusion energy out > laser energy input) has been achieved for the first time (here, G_{target}∼1.5). This Letter reports on the physics principles of the design changes that led to the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce target gain greater than unity and exceeded the previously obtained conditions needed for ignition by the Lawson criterion. Key elements of the success came from reducing "coast time" (the time duration between the end of the laser pulse and implosion peak compression) and maximizing the internal energy delivered to the "hot spot" (the yield producing part of the fusion fuel). The link between coast time and maximally efficient conversion of kinetic energy into internal energy is explained. The energetics consequences of asymmetry and hydrodynamic-induced mixing were part of high-yield big radius implosion design experimental and design strategy. Herein, it is shown how asymmetry and mixing consolidate into one key relationship. It is shown that mixing distills into a kinetic energy cost similar to the impact of implosion asymmetry, shifting the threshold for ignition to higher implosion kinetic energy-a factor not normally included in most statements of the generalized Lawson criterion, but the key needed modifications clearly emerge.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.132.065103