Building Semipermeable Films One Monomer at a Time: Structural Advantages via Molecular Layer Deposition vs Interfacial Polymerization

Molecular layer deposition (MLD) provides the opportunity to perform condensation polymerization one vaporized monomer at a time for the creation of precise, selective nanofilms for desalination membranes. Here, we compare the structure, chemistry, and morphology of two types of commercial interfaci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2024-02, Vol.36 (3), p.1362-1374
Hauptverfasser: Welch, Brian C., Antonio, Emma N., Chaney, Thomas P., McIntee, Olivia M., Strzalka, Joseph, Bright, Victor M., Greenberg, Alan R., Segal-Peretz, Tamar, Toney, Michael, George, Steven M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1374
container_issue 3
container_start_page 1362
container_title Chemistry of materials
container_volume 36
creator Welch, Brian C.
Antonio, Emma N.
Chaney, Thomas P.
McIntee, Olivia M.
Strzalka, Joseph
Bright, Victor M.
Greenberg, Alan R.
Segal-Peretz, Tamar
Toney, Michael
George, Steven M.
description Molecular layer deposition (MLD) provides the opportunity to perform condensation polymerization one vaporized monomer at a time for the creation of precise, selective nanofilms for desalination membranes. Here, we compare the structure, chemistry, and morphology of two types of commercial interfacial polymerzation (IP) membranes with lab-made MLD films. M-phenylenediamine (MPD) and trimesoyl chloride (TMC) produced a cross-linked, aromatic polyamide often used in reverse osmosis membranes at MLD growth rates of 2.9 Å/cycle at 115 °C. Likewise, piperazine (PIP) and TMC formed polypiperazine amide, a common selective layer in nanofiltration membranes, with MLD growth rates of 1.5 Å/cycle at 115 °C. Ellipsometry and X-ray reflectivity results suggest that the surface of the MLD films is comprised of polymer segments roughly two monomers in length, which are connected at one end to the cross-linked bulk layer. As a result of this structure as well as the triple-functionality of TMC, MPD-TMC had a temperature window of stable growth rate from 115 to 150 °C, which is unlike any non-cross-linked MLD chemistries reported in the literature. Compared to IP films, corresponding MLD films were denser and morphologically conformal, which suggests a reduction in void volumes; this explains the high degree of salt rejection and reduced flux previously observed for exceptionally thin MPD-TMC MLD membranes. Using X-ray photoelectron spectroscopy and infrared spectroscopy, MLD PIP-TMC films evidenced a completely cross-linked internal structure, which lacked amine and carboxyl groups, pointing to a hydrophobic bulk structure, ideal for optimized water flux. Grazing-incidence wide-angle X-ray scattering showed broad features in each polyamide with d-spacings of 5.0 Å in PIP-TMC compared to that of 3.8 Å in MPD-TMC. While MLD and IP films were structurally identical to PIP-TMC, MPD-TMC IP films had a structure that may have been altered by post-treatment compared to MLD films. These results provide foundational insights into the MLD process, structure–performance relationships, and membrane fabrication.
doi_str_mv 10.1021/acs.chemmater.3c02519
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2282921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928584434</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-44738932f0f554e0e62703b0f78493f7db2966e9eaebc8f8f843e107095751643</originalsourceid><addsrcrecordid>eNqFkc1uEzEURkcIRNPCI4AsVmwm-HfsYdeWFioFFallbXmcO60rjx1sT6TwADw3jhK6RV7chc_5ruWvad4RvCSYkk_G5qV9hGkyBdKSWUwF6V80CyIobgXG9GWzwKqXLZeiO2lOc37CmFRVvW5OmGISU6kWzZ-L2fm1Cw_oDia3gTSBGTyga-enjG4DoO8xxAkSMgUZdO8m-IzuSpptmZPx6Hy9NaGYB8ho60yFPdjZm4RWZlelL7CJ2RUXA9pmdBPqW0djXRV_RL-rse632d--aV6Nxmd4e5xnzc_rq_vLb-3q9uvN5fmqNZyK0nIumeoZHfEoBAcMHZWYDXiUivdslOuB9l0HPRgYrBrr4QwIlrgXUpCOs7PmwyE35uJ0tq6AfbQxBLBFU6poT0mFPh6gTYq_ZshFTy5b8N4EiHPWFVJCcc72eeKA2hRzTjDqTXKTSTtNsN73pGtP-rknfeypeu-PK-ZhgvWz9a-YCpADsPef4pxC_Zb_hP4F7Bij2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928584434</pqid></control><display><type>article</type><title>Building Semipermeable Films One Monomer at a Time: Structural Advantages via Molecular Layer Deposition vs Interfacial Polymerization</title><source>American Chemical Society (ACS) Journals</source><creator>Welch, Brian C. ; Antonio, Emma N. ; Chaney, Thomas P. ; McIntee, Olivia M. ; Strzalka, Joseph ; Bright, Victor M. ; Greenberg, Alan R. ; Segal-Peretz, Tamar ; Toney, Michael ; George, Steven M.</creator><creatorcontrib>Welch, Brian C. ; Antonio, Emma N. ; Chaney, Thomas P. ; McIntee, Olivia M. ; Strzalka, Joseph ; Bright, Victor M. ; Greenberg, Alan R. ; Segal-Peretz, Tamar ; Toney, Michael ; George, Steven M.</creatorcontrib><description>Molecular layer deposition (MLD) provides the opportunity to perform condensation polymerization one vaporized monomer at a time for the creation of precise, selective nanofilms for desalination membranes. Here, we compare the structure, chemistry, and morphology of two types of commercial interfacial polymerzation (IP) membranes with lab-made MLD films. M-phenylenediamine (MPD) and trimesoyl chloride (TMC) produced a cross-linked, aromatic polyamide often used in reverse osmosis membranes at MLD growth rates of 2.9 Å/cycle at 115 °C. Likewise, piperazine (PIP) and TMC formed polypiperazine amide, a common selective layer in nanofiltration membranes, with MLD growth rates of 1.5 Å/cycle at 115 °C. Ellipsometry and X-ray reflectivity results suggest that the surface of the MLD films is comprised of polymer segments roughly two monomers in length, which are connected at one end to the cross-linked bulk layer. As a result of this structure as well as the triple-functionality of TMC, MPD-TMC had a temperature window of stable growth rate from 115 to 150 °C, which is unlike any non-cross-linked MLD chemistries reported in the literature. Compared to IP films, corresponding MLD films were denser and morphologically conformal, which suggests a reduction in void volumes; this explains the high degree of salt rejection and reduced flux previously observed for exceptionally thin MPD-TMC MLD membranes. Using X-ray photoelectron spectroscopy and infrared spectroscopy, MLD PIP-TMC films evidenced a completely cross-linked internal structure, which lacked amine and carboxyl groups, pointing to a hydrophobic bulk structure, ideal for optimized water flux. Grazing-incidence wide-angle X-ray scattering showed broad features in each polyamide with d-spacings of 5.0 Å in PIP-TMC compared to that of 3.8 Å in MPD-TMC. While MLD and IP films were structurally identical to PIP-TMC, MPD-TMC IP films had a structure that may have been altered by post-treatment compared to MLD films. These results provide foundational insights into the MLD process, structure–performance relationships, and membrane fabrication.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02519</identifier><identifier>PMID: 38370278</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Chemistry of materials, 2024-02, Vol.36 (3), p.1362-1374</ispartof><rights>2024 American Chemical Society</rights><rights>2024 American Chemical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-44738932f0f554e0e62703b0f78493f7db2966e9eaebc8f8f843e107095751643</citedby><cites>FETCH-LOGICAL-a425t-44738932f0f554e0e62703b0f78493f7db2966e9eaebc8f8f843e107095751643</cites><orcidid>0000-0003-4619-8932 ; 0000-0003-0253-9184 ; 0000-0002-9747-045X ; 0000-0002-7513-1166 ; 0000-0002-8123-7215 ; 0000-0003-3222-6429 ; 0000-0003-1785-9439 ; 0000000332226429 ; 000000029747045X ; 0000000346198932 ; 0000000281237215 ; 0000000275131166 ; 0000000317859439 ; 0000000302539184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.3c02519$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c02519$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38370278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2282921$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Welch, Brian C.</creatorcontrib><creatorcontrib>Antonio, Emma N.</creatorcontrib><creatorcontrib>Chaney, Thomas P.</creatorcontrib><creatorcontrib>McIntee, Olivia M.</creatorcontrib><creatorcontrib>Strzalka, Joseph</creatorcontrib><creatorcontrib>Bright, Victor M.</creatorcontrib><creatorcontrib>Greenberg, Alan R.</creatorcontrib><creatorcontrib>Segal-Peretz, Tamar</creatorcontrib><creatorcontrib>Toney, Michael</creatorcontrib><creatorcontrib>George, Steven M.</creatorcontrib><title>Building Semipermeable Films One Monomer at a Time: Structural Advantages via Molecular Layer Deposition vs Interfacial Polymerization</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Molecular layer deposition (MLD) provides the opportunity to perform condensation polymerization one vaporized monomer at a time for the creation of precise, selective nanofilms for desalination membranes. Here, we compare the structure, chemistry, and morphology of two types of commercial interfacial polymerzation (IP) membranes with lab-made MLD films. M-phenylenediamine (MPD) and trimesoyl chloride (TMC) produced a cross-linked, aromatic polyamide often used in reverse osmosis membranes at MLD growth rates of 2.9 Å/cycle at 115 °C. Likewise, piperazine (PIP) and TMC formed polypiperazine amide, a common selective layer in nanofiltration membranes, with MLD growth rates of 1.5 Å/cycle at 115 °C. Ellipsometry and X-ray reflectivity results suggest that the surface of the MLD films is comprised of polymer segments roughly two monomers in length, which are connected at one end to the cross-linked bulk layer. As a result of this structure as well as the triple-functionality of TMC, MPD-TMC had a temperature window of stable growth rate from 115 to 150 °C, which is unlike any non-cross-linked MLD chemistries reported in the literature. Compared to IP films, corresponding MLD films were denser and morphologically conformal, which suggests a reduction in void volumes; this explains the high degree of salt rejection and reduced flux previously observed for exceptionally thin MPD-TMC MLD membranes. Using X-ray photoelectron spectroscopy and infrared spectroscopy, MLD PIP-TMC films evidenced a completely cross-linked internal structure, which lacked amine and carboxyl groups, pointing to a hydrophobic bulk structure, ideal for optimized water flux. Grazing-incidence wide-angle X-ray scattering showed broad features in each polyamide with d-spacings of 5.0 Å in PIP-TMC compared to that of 3.8 Å in MPD-TMC. While MLD and IP films were structurally identical to PIP-TMC, MPD-TMC IP films had a structure that may have been altered by post-treatment compared to MLD films. These results provide foundational insights into the MLD process, structure–performance relationships, and membrane fabrication.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEURkcIRNPCI4AsVmwm-HfsYdeWFioFFallbXmcO60rjx1sT6TwADw3jhK6RV7chc_5ruWvad4RvCSYkk_G5qV9hGkyBdKSWUwF6V80CyIobgXG9GWzwKqXLZeiO2lOc37CmFRVvW5OmGISU6kWzZ-L2fm1Cw_oDia3gTSBGTyga-enjG4DoO8xxAkSMgUZdO8m-IzuSpptmZPx6Hy9NaGYB8ho60yFPdjZm4RWZlelL7CJ2RUXA9pmdBPqW0djXRV_RL-rse632d--aV6Nxmd4e5xnzc_rq_vLb-3q9uvN5fmqNZyK0nIumeoZHfEoBAcMHZWYDXiUivdslOuB9l0HPRgYrBrr4QwIlrgXUpCOs7PmwyE35uJ0tq6AfbQxBLBFU6poT0mFPh6gTYq_ZshFTy5b8N4EiHPWFVJCcc72eeKA2hRzTjDqTXKTSTtNsN73pGtP-rknfeypeu-PK-ZhgvWz9a-YCpADsPef4pxC_Zb_hP4F7Bij2A</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Welch, Brian C.</creator><creator>Antonio, Emma N.</creator><creator>Chaney, Thomas P.</creator><creator>McIntee, Olivia M.</creator><creator>Strzalka, Joseph</creator><creator>Bright, Victor M.</creator><creator>Greenberg, Alan R.</creator><creator>Segal-Peretz, Tamar</creator><creator>Toney, Michael</creator><creator>George, Steven M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4619-8932</orcidid><orcidid>https://orcid.org/0000-0003-0253-9184</orcidid><orcidid>https://orcid.org/0000-0002-9747-045X</orcidid><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0002-8123-7215</orcidid><orcidid>https://orcid.org/0000-0003-3222-6429</orcidid><orcidid>https://orcid.org/0000-0003-1785-9439</orcidid><orcidid>https://orcid.org/0000000332226429</orcidid><orcidid>https://orcid.org/000000029747045X</orcidid><orcidid>https://orcid.org/0000000346198932</orcidid><orcidid>https://orcid.org/0000000281237215</orcidid><orcidid>https://orcid.org/0000000275131166</orcidid><orcidid>https://orcid.org/0000000317859439</orcidid><orcidid>https://orcid.org/0000000302539184</orcidid></search><sort><creationdate>20240213</creationdate><title>Building Semipermeable Films One Monomer at a Time: Structural Advantages via Molecular Layer Deposition vs Interfacial Polymerization</title><author>Welch, Brian C. ; Antonio, Emma N. ; Chaney, Thomas P. ; McIntee, Olivia M. ; Strzalka, Joseph ; Bright, Victor M. ; Greenberg, Alan R. ; Segal-Peretz, Tamar ; Toney, Michael ; George, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-44738932f0f554e0e62703b0f78493f7db2966e9eaebc8f8f843e107095751643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welch, Brian C.</creatorcontrib><creatorcontrib>Antonio, Emma N.</creatorcontrib><creatorcontrib>Chaney, Thomas P.</creatorcontrib><creatorcontrib>McIntee, Olivia M.</creatorcontrib><creatorcontrib>Strzalka, Joseph</creatorcontrib><creatorcontrib>Bright, Victor M.</creatorcontrib><creatorcontrib>Greenberg, Alan R.</creatorcontrib><creatorcontrib>Segal-Peretz, Tamar</creatorcontrib><creatorcontrib>Toney, Michael</creatorcontrib><creatorcontrib>George, Steven M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welch, Brian C.</au><au>Antonio, Emma N.</au><au>Chaney, Thomas P.</au><au>McIntee, Olivia M.</au><au>Strzalka, Joseph</au><au>Bright, Victor M.</au><au>Greenberg, Alan R.</au><au>Segal-Peretz, Tamar</au><au>Toney, Michael</au><au>George, Steven M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Semipermeable Films One Monomer at a Time: Structural Advantages via Molecular Layer Deposition vs Interfacial Polymerization</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-02-13</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><spage>1362</spage><epage>1374</epage><pages>1362-1374</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Molecular layer deposition (MLD) provides the opportunity to perform condensation polymerization one vaporized monomer at a time for the creation of precise, selective nanofilms for desalination membranes. Here, we compare the structure, chemistry, and morphology of two types of commercial interfacial polymerzation (IP) membranes with lab-made MLD films. M-phenylenediamine (MPD) and trimesoyl chloride (TMC) produced a cross-linked, aromatic polyamide often used in reverse osmosis membranes at MLD growth rates of 2.9 Å/cycle at 115 °C. Likewise, piperazine (PIP) and TMC formed polypiperazine amide, a common selective layer in nanofiltration membranes, with MLD growth rates of 1.5 Å/cycle at 115 °C. Ellipsometry and X-ray reflectivity results suggest that the surface of the MLD films is comprised of polymer segments roughly two monomers in length, which are connected at one end to the cross-linked bulk layer. As a result of this structure as well as the triple-functionality of TMC, MPD-TMC had a temperature window of stable growth rate from 115 to 150 °C, which is unlike any non-cross-linked MLD chemistries reported in the literature. Compared to IP films, corresponding MLD films were denser and morphologically conformal, which suggests a reduction in void volumes; this explains the high degree of salt rejection and reduced flux previously observed for exceptionally thin MPD-TMC MLD membranes. Using X-ray photoelectron spectroscopy and infrared spectroscopy, MLD PIP-TMC films evidenced a completely cross-linked internal structure, which lacked amine and carboxyl groups, pointing to a hydrophobic bulk structure, ideal for optimized water flux. Grazing-incidence wide-angle X-ray scattering showed broad features in each polyamide with d-spacings of 5.0 Å in PIP-TMC compared to that of 3.8 Å in MPD-TMC. While MLD and IP films were structurally identical to PIP-TMC, MPD-TMC IP films had a structure that may have been altered by post-treatment compared to MLD films. These results provide foundational insights into the MLD process, structure–performance relationships, and membrane fabrication.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38370278</pmid><doi>10.1021/acs.chemmater.3c02519</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4619-8932</orcidid><orcidid>https://orcid.org/0000-0003-0253-9184</orcidid><orcidid>https://orcid.org/0000-0002-9747-045X</orcidid><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0002-8123-7215</orcidid><orcidid>https://orcid.org/0000-0003-3222-6429</orcidid><orcidid>https://orcid.org/0000-0003-1785-9439</orcidid><orcidid>https://orcid.org/0000000332226429</orcidid><orcidid>https://orcid.org/000000029747045X</orcidid><orcidid>https://orcid.org/0000000346198932</orcidid><orcidid>https://orcid.org/0000000281237215</orcidid><orcidid>https://orcid.org/0000000275131166</orcidid><orcidid>https://orcid.org/0000000317859439</orcidid><orcidid>https://orcid.org/0000000302539184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2024-02, Vol.36 (3), p.1362-1374
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_2282921
source American Chemical Society (ACS) Journals
title Building Semipermeable Films One Monomer at a Time: Structural Advantages via Molecular Layer Deposition vs Interfacial Polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Semipermeable%20Films%20One%20Monomer%20at%20a%20Time:%20Structural%20Advantages%20via%20Molecular%20Layer%20Deposition%20vs%20Interfacial%20Polymerization&rft.jtitle=Chemistry%20of%20materials&rft.au=Welch,%20Brian%20C.&rft.date=2024-02-13&rft.volume=36&rft.issue=3&rft.spage=1362&rft.epage=1374&rft.pages=1362-1374&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02519&rft_dat=%3Cproquest_osti_%3E2928584434%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928584434&rft_id=info:pmid/38370278&rfr_iscdi=true