High temperature validation of a line heat source technique for in-pile thermal conductivity determination
In-pile instrumentation is critical for advancing operations and materials discovery in the nuclear industry. Ensuring optimal performance of sensors in high temperatures is the first step in demonstrating their viability in the harsh in-pile environment. This work demonstrates the high temperature...
Gespeichert in:
Veröffentlicht in: | International journal of thermal sciences 2024-05, Vol.199, p.108907, Article 108907 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108907 |
container_title | International journal of thermal sciences |
container_volume | 199 |
creator | Wada, Katelyn Bateman, Allyssa Varghese, Tony Valayil Fleming, Austin Jaques, Brian J. Estrada, David |
description | In-pile instrumentation is critical for advancing operations and materials discovery in the nuclear industry. Ensuring optimal performance of sensors in high temperatures is the first step in demonstrating their viability in the harsh in-pile environment. This work demonstrates the high temperature capabilities of a line heat source and measurement technique previously shown to extract thermal conductivity of nuclear fuel sized samples within a laboratory environment at room temperature. This method uses a hybrid AC/DC measurement technique to obtain rapid measurements of the temperature dependent voltage change of a heater wire, which also acts as a resistance thermometer. Once the temperature profile of the heating element is extracted it is matched to a multilayered analytical model to determine the thermal conductivity of the sample. Measurements are conducted over a range of temperatures to extract the thermal conductivity as a function of temperature for 10 mm diameter 6061 aluminum samples. Each measurement had a coefficient of correlation (R2) value higher than 0.995 when matched to its corresponding analytical model. The thermal diffusivity values for each temperature are also identified and reported. Microstructure analysis was also conducted to further characterize the material measured. |
doi_str_mv | 10.1016/j.ijthermalsci.2024.108907 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2282684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072924000292</els_id><sourcerecordid>S1290072924000292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-64b21b6a85c6b0ff30d6c55826694e0b233697b25f69fc5052af95ea692a269a3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEuXxD1b3KY6TODE7VB5FqsQG1pbjjMlErVMcp1L_HoewYMlqRuM7d64PIcuUrVKWirtuhV1owe_1bjC44ozn8aGSrDwji7QsqyRPhTiPPZcsYSWXl-RqGDrGWCmZXJBug58tDbA_gNdh9ECPeoeNDtg72luq6Q4d0BZ0oEM_egNRbFqHXyNQ23uKLjngLk7nFNT0rhlNwCOGE20gxCm6H7sbcmFjTLj9rdfk4_npfb1Jtm8vr-uHbWKyXIRE5DVPa6GrwoiaWZuxRpiiqLgQMgdW8ywTsqx5YYW0pmAF11YWoIXkmgups2uynH37IaCKWKbAMZYDExTn0ajKo-h-FhnfD4MHqw4e99qfVMrUhFZ16i9aNaFVM9q4_DgvQ_zGEcFPV8AZaNBPR5oe_2PzDRR-ivQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High temperature validation of a line heat source technique for in-pile thermal conductivity determination</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wada, Katelyn ; Bateman, Allyssa ; Varghese, Tony Valayil ; Fleming, Austin ; Jaques, Brian J. ; Estrada, David</creator><creatorcontrib>Wada, Katelyn ; Bateman, Allyssa ; Varghese, Tony Valayil ; Fleming, Austin ; Jaques, Brian J. ; Estrada, David ; Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><description>In-pile instrumentation is critical for advancing operations and materials discovery in the nuclear industry. Ensuring optimal performance of sensors in high temperatures is the first step in demonstrating their viability in the harsh in-pile environment. This work demonstrates the high temperature capabilities of a line heat source and measurement technique previously shown to extract thermal conductivity of nuclear fuel sized samples within a laboratory environment at room temperature. This method uses a hybrid AC/DC measurement technique to obtain rapid measurements of the temperature dependent voltage change of a heater wire, which also acts as a resistance thermometer. Once the temperature profile of the heating element is extracted it is matched to a multilayered analytical model to determine the thermal conductivity of the sample. Measurements are conducted over a range of temperatures to extract the thermal conductivity as a function of temperature for 10 mm diameter 6061 aluminum samples. Each measurement had a coefficient of correlation (R2) value higher than 0.995 when matched to its corresponding analytical model. The thermal diffusivity values for each temperature are also identified and reported. Microstructure analysis was also conducted to further characterize the material measured.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2024.108907</identifier><language>eng</language><publisher>United States: Elsevier Masson SAS</publisher><subject>High Temperature ; In-pile ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Thermal conductivity ; Transient Line Source method</subject><ispartof>International journal of thermal sciences, 2024-05, Vol.199, p.108907, Article 108907</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c346t-64b21b6a85c6b0ff30d6c55826694e0b233697b25f69fc5052af95ea692a269a3</cites><orcidid>0000-0001-5894-0773 ; 0000-0002-3251-8395 ; 0000-0001-6959-6699 ; 0000-0002-5324-555X ; 0000000169596699 ; 0000000158940773 ; 000000025324555X ; 0000000232518395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijthermalsci.2024.108907$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2282684$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wada, Katelyn</creatorcontrib><creatorcontrib>Bateman, Allyssa</creatorcontrib><creatorcontrib>Varghese, Tony Valayil</creatorcontrib><creatorcontrib>Fleming, Austin</creatorcontrib><creatorcontrib>Jaques, Brian J.</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><title>High temperature validation of a line heat source technique for in-pile thermal conductivity determination</title><title>International journal of thermal sciences</title><description>In-pile instrumentation is critical for advancing operations and materials discovery in the nuclear industry. Ensuring optimal performance of sensors in high temperatures is the first step in demonstrating their viability in the harsh in-pile environment. This work demonstrates the high temperature capabilities of a line heat source and measurement technique previously shown to extract thermal conductivity of nuclear fuel sized samples within a laboratory environment at room temperature. This method uses a hybrid AC/DC measurement technique to obtain rapid measurements of the temperature dependent voltage change of a heater wire, which also acts as a resistance thermometer. Once the temperature profile of the heating element is extracted it is matched to a multilayered analytical model to determine the thermal conductivity of the sample. Measurements are conducted over a range of temperatures to extract the thermal conductivity as a function of temperature for 10 mm diameter 6061 aluminum samples. Each measurement had a coefficient of correlation (R2) value higher than 0.995 when matched to its corresponding analytical model. The thermal diffusivity values for each temperature are also identified and reported. Microstructure analysis was also conducted to further characterize the material measured.</description><subject>High Temperature</subject><subject>In-pile</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Thermal conductivity</subject><subject>Transient Line Source method</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEuXxD1b3KY6TODE7VB5FqsQG1pbjjMlErVMcp1L_HoewYMlqRuM7d64PIcuUrVKWirtuhV1owe_1bjC44ozn8aGSrDwji7QsqyRPhTiPPZcsYSWXl-RqGDrGWCmZXJBug58tDbA_gNdh9ECPeoeNDtg72luq6Q4d0BZ0oEM_egNRbFqHXyNQ23uKLjngLk7nFNT0rhlNwCOGE20gxCm6H7sbcmFjTLj9rdfk4_npfb1Jtm8vr-uHbWKyXIRE5DVPa6GrwoiaWZuxRpiiqLgQMgdW8ywTsqx5YYW0pmAF11YWoIXkmgups2uynH37IaCKWKbAMZYDExTn0ajKo-h-FhnfD4MHqw4e99qfVMrUhFZ16i9aNaFVM9q4_DgvQ_zGEcFPV8AZaNBPR5oe_2PzDRR-ivQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wada, Katelyn</creator><creator>Bateman, Allyssa</creator><creator>Varghese, Tony Valayil</creator><creator>Fleming, Austin</creator><creator>Jaques, Brian J.</creator><creator>Estrada, David</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5894-0773</orcidid><orcidid>https://orcid.org/0000-0002-3251-8395</orcidid><orcidid>https://orcid.org/0000-0001-6959-6699</orcidid><orcidid>https://orcid.org/0000-0002-5324-555X</orcidid><orcidid>https://orcid.org/0000000169596699</orcidid><orcidid>https://orcid.org/0000000158940773</orcidid><orcidid>https://orcid.org/000000025324555X</orcidid><orcidid>https://orcid.org/0000000232518395</orcidid></search><sort><creationdate>20240501</creationdate><title>High temperature validation of a line heat source technique for in-pile thermal conductivity determination</title><author>Wada, Katelyn ; Bateman, Allyssa ; Varghese, Tony Valayil ; Fleming, Austin ; Jaques, Brian J. ; Estrada, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-64b21b6a85c6b0ff30d6c55826694e0b233697b25f69fc5052af95ea692a269a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>High Temperature</topic><topic>In-pile</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Thermal conductivity</topic><topic>Transient Line Source method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wada, Katelyn</creatorcontrib><creatorcontrib>Bateman, Allyssa</creatorcontrib><creatorcontrib>Varghese, Tony Valayil</creatorcontrib><creatorcontrib>Fleming, Austin</creatorcontrib><creatorcontrib>Jaques, Brian J.</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wada, Katelyn</au><au>Bateman, Allyssa</au><au>Varghese, Tony Valayil</au><au>Fleming, Austin</au><au>Jaques, Brian J.</au><au>Estrada, David</au><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature validation of a line heat source technique for in-pile thermal conductivity determination</atitle><jtitle>International journal of thermal sciences</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>199</volume><spage>108907</spage><pages>108907-</pages><artnum>108907</artnum><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>In-pile instrumentation is critical for advancing operations and materials discovery in the nuclear industry. Ensuring optimal performance of sensors in high temperatures is the first step in demonstrating their viability in the harsh in-pile environment. This work demonstrates the high temperature capabilities of a line heat source and measurement technique previously shown to extract thermal conductivity of nuclear fuel sized samples within a laboratory environment at room temperature. This method uses a hybrid AC/DC measurement technique to obtain rapid measurements of the temperature dependent voltage change of a heater wire, which also acts as a resistance thermometer. Once the temperature profile of the heating element is extracted it is matched to a multilayered analytical model to determine the thermal conductivity of the sample. Measurements are conducted over a range of temperatures to extract the thermal conductivity as a function of temperature for 10 mm diameter 6061 aluminum samples. Each measurement had a coefficient of correlation (R2) value higher than 0.995 when matched to its corresponding analytical model. The thermal diffusivity values for each temperature are also identified and reported. Microstructure analysis was also conducted to further characterize the material measured.</abstract><cop>United States</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2024.108907</doi><orcidid>https://orcid.org/0000-0001-5894-0773</orcidid><orcidid>https://orcid.org/0000-0002-3251-8395</orcidid><orcidid>https://orcid.org/0000-0001-6959-6699</orcidid><orcidid>https://orcid.org/0000-0002-5324-555X</orcidid><orcidid>https://orcid.org/0000000169596699</orcidid><orcidid>https://orcid.org/0000000158940773</orcidid><orcidid>https://orcid.org/000000025324555X</orcidid><orcidid>https://orcid.org/0000000232518395</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1290-0729 |
ispartof | International journal of thermal sciences, 2024-05, Vol.199, p.108907, Article 108907 |
issn | 1290-0729 1778-4166 |
language | eng |
recordid | cdi_osti_scitechconnect_2282684 |
source | Elsevier ScienceDirect Journals Complete |
subjects | High Temperature In-pile INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Thermal conductivity Transient Line Source method |
title | High temperature validation of a line heat source technique for in-pile thermal conductivity determination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T23%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20validation%20of%20a%20line%20heat%20source%20technique%20for%20in-pile%20thermal%20conductivity%20determination&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Wada,%20Katelyn&rft.aucorp=Idaho%20National%20Laboratory%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2024-05-01&rft.volume=199&rft.spage=108907&rft.pages=108907-&rft.artnum=108907&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2024.108907&rft_dat=%3Celsevier_osti_%3ES1290072924000292%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1290072924000292&rfr_iscdi=true |