A scalable framework for quantifying field-level agricultural carbon outcomes

Agriculture contributes nearly a quarter of global greenhouse gas (GHG) emissions, which is motivating interest in adopting certain farming practices that have the potential to reduce GHG emissions or sequester carbon in soil. The related GHG emission (including N2O and CH4) and changes in soil carb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth-science reviews 2023-08, Vol.243, p.104462, Article 104462
Hauptverfasser: Guan, Kaiyu, Jin, Zhenong, Peng, Bin, Tang, Jinyun, DeLucia, Evan H., West, Paul C., Jiang, Chongya, Wang, Sheng, Kim, Taegon, Zhou, Wang, Griffis, Tim, Liu, Licheng, Yang, Wendy H., Qin, Ziqi, Yang, Qi, Margenot, Andrew, Stuchiner, Emily R., Kumar, Vipin, Bernacchi, Carl, Coppess, Jonathan, Novick, Kimberly A., Gerber, James, Jahn, Molly, Khanna, Madhu, Lee, DoKyoung, Chen, Zhangliang, Yang, Shang-Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104462
container_title Earth-science reviews
container_volume 243
creator Guan, Kaiyu
Jin, Zhenong
Peng, Bin
Tang, Jinyun
DeLucia, Evan H.
West, Paul C.
Jiang, Chongya
Wang, Sheng
Kim, Taegon
Zhou, Wang
Griffis, Tim
Liu, Licheng
Yang, Wendy H.
Qin, Ziqi
Yang, Qi
Margenot, Andrew
Stuchiner, Emily R.
Kumar, Vipin
Bernacchi, Carl
Coppess, Jonathan
Novick, Kimberly A.
Gerber, James
Jahn, Molly
Khanna, Madhu
Lee, DoKyoung
Chen, Zhangliang
Yang, Shang-Jen
description Agriculture contributes nearly a quarter of global greenhouse gas (GHG) emissions, which is motivating interest in adopting certain farming practices that have the potential to reduce GHG emissions or sequester carbon in soil. The related GHG emission (including N2O and CH4) and changes in soil carbon stock are defined here as “agricultural carbon outcomes”. Accurate quantification of agricultural carbon outcomes is the basis for achieving emission reductions for agriculture, but existing approaches for measuring carbon outcomes (including direct measurements, emission factors, and process-based modeling) fall short of achieving the required accuracy and scalability necessary to support credible, verifiable, and cost-effective measurement and improvement of these carbon outcomes. Here we propose a foundational and scalable framework to quantify field-level carbon outcomes for farmland, which is based on the holistic carbon balance of the agroecosystem: Agroecosystem Carbon Outcomes = Environment (E) × Management (M) × Crop (C). Following a comprehensive review of the scientific challenges associated with existing approaches, as well as their tradeoffs between cost and accuracy, we propose that the most viable path for the quantification of field-level carbon outcomes in agricultural land is through an effective integration of various approaches (e.g. diverse observations, sensor/in-situ data, and modeling), defined as the “System-of-Systems” solution. Such a “System-of-Systems” solution should simultaneously comprise the following components: (1) scalable collection of ground truth data and cross-scale sensing of environment variables (E), management practices (M), and crop conditions (C) at the local field level; (2) advanced modeling with necessary processes to support the quantification of carbon outcomes; (3) systematic Model-Data Fusion (MDF), i.e. robust and efficient methods to integrate sensing data and models at each local farmland level; (4) high computation efficiency and artificial intelligence (AI) to scale to millions of individual fields with low cost; and (5) robust and multi-tier validation systems and infrastructures to ensure solution fidelity and true scalability, i.e. the ability of a solution to perform robustly with accepted accuracy on all targeted fields. In this regard, we provide here the detailed scientific rationale, current progress, and future research and development (R&D) priorities to achieve different components of the “S
doi_str_mv 10.1016/j.earscirev.2023.104462
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2281851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012825223001514</els_id><sourcerecordid>S0012825223001514</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-79f11b208ec128f7afda6cf901aaa4983afc8cc301eb525152a3af6c23e56a773</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI3YHFPsZ2Xc6wqXlIRFzhbG2ddXNwY7KSof4-rIK6cVjuah2YIueZswRmvbrcLhBC1DbhfCCbyhBZFJU7IjMtaZJUU8pTMGOMik6IU5-Qixi1LP2vqGXle0qjBQeuQmgA7_Pbhgxof6NcI_WDNwfYbaiy6LnO4R0dhE6we3TAGcFRDaH1P_Thov8N4Sc4MuIhXv3dO3u7vXleP2frl4Wm1XGdQ8GLI6sZw3gomUXMhTQ2mg0qbhnEAKBqZg9FS65xxbEtR8lJAgiotciwrqOt8Tm4mXx8Hq1L5AfW79n2PelBCSC5Lnkj1RNLBxxjQqM9gdxAOijN1nE5t1d906jidmqZLyuWkxNRhbzEcI7DX2CVqSui8_dfjByHWfRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A scalable framework for quantifying field-level agricultural carbon outcomes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Guan, Kaiyu ; Jin, Zhenong ; Peng, Bin ; Tang, Jinyun ; DeLucia, Evan H. ; West, Paul C. ; Jiang, Chongya ; Wang, Sheng ; Kim, Taegon ; Zhou, Wang ; Griffis, Tim ; Liu, Licheng ; Yang, Wendy H. ; Qin, Ziqi ; Yang, Qi ; Margenot, Andrew ; Stuchiner, Emily R. ; Kumar, Vipin ; Bernacchi, Carl ; Coppess, Jonathan ; Novick, Kimberly A. ; Gerber, James ; Jahn, Molly ; Khanna, Madhu ; Lee, DoKyoung ; Chen, Zhangliang ; Yang, Shang-Jen</creator><creatorcontrib>Guan, Kaiyu ; Jin, Zhenong ; Peng, Bin ; Tang, Jinyun ; DeLucia, Evan H. ; West, Paul C. ; Jiang, Chongya ; Wang, Sheng ; Kim, Taegon ; Zhou, Wang ; Griffis, Tim ; Liu, Licheng ; Yang, Wendy H. ; Qin, Ziqi ; Yang, Qi ; Margenot, Andrew ; Stuchiner, Emily R. ; Kumar, Vipin ; Bernacchi, Carl ; Coppess, Jonathan ; Novick, Kimberly A. ; Gerber, James ; Jahn, Molly ; Khanna, Madhu ; Lee, DoKyoung ; Chen, Zhangliang ; Yang, Shang-Jen ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Agriculture contributes nearly a quarter of global greenhouse gas (GHG) emissions, which is motivating interest in adopting certain farming practices that have the potential to reduce GHG emissions or sequester carbon in soil. The related GHG emission (including N2O and CH4) and changes in soil carbon stock are defined here as “agricultural carbon outcomes”. Accurate quantification of agricultural carbon outcomes is the basis for achieving emission reductions for agriculture, but existing approaches for measuring carbon outcomes (including direct measurements, emission factors, and process-based modeling) fall short of achieving the required accuracy and scalability necessary to support credible, verifiable, and cost-effective measurement and improvement of these carbon outcomes. Here we propose a foundational and scalable framework to quantify field-level carbon outcomes for farmland, which is based on the holistic carbon balance of the agroecosystem: Agroecosystem Carbon Outcomes = Environment (E) × Management (M) × Crop (C). Following a comprehensive review of the scientific challenges associated with existing approaches, as well as their tradeoffs between cost and accuracy, we propose that the most viable path for the quantification of field-level carbon outcomes in agricultural land is through an effective integration of various approaches (e.g. diverse observations, sensor/in-situ data, and modeling), defined as the “System-of-Systems” solution. Such a “System-of-Systems” solution should simultaneously comprise the following components: (1) scalable collection of ground truth data and cross-scale sensing of environment variables (E), management practices (M), and crop conditions (C) at the local field level; (2) advanced modeling with necessary processes to support the quantification of carbon outcomes; (3) systematic Model-Data Fusion (MDF), i.e. robust and efficient methods to integrate sensing data and models at each local farmland level; (4) high computation efficiency and artificial intelligence (AI) to scale to millions of individual fields with low cost; and (5) robust and multi-tier validation systems and infrastructures to ensure solution fidelity and true scalability, i.e. the ability of a solution to perform robustly with accepted accuracy on all targeted fields. In this regard, we provide here the detailed scientific rationale, current progress, and future research and development (R&amp;D) priorities to achieve different components of the “System-of-Systems” solution, thus accomplishing the Environment×Management×Crop framework to quantify field-level agricultural carbon outcomes.</description><identifier>ISSN: 0012-8252</identifier><identifier>EISSN: 1872-6828</identifier><identifier>DOI: 10.1016/j.earscirev.2023.104462</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Agroecosystem ; Carbon outcomes ; ENVIRONMENTAL SCIENCES ; GHG quantification ; Methane ; Nitrous oxide ; Soil organic carbon ; System-of-Systems</subject><ispartof>Earth-science reviews, 2023-08, Vol.243, p.104462, Article 104462</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-79f11b208ec128f7afda6cf901aaa4983afc8cc301eb525152a3af6c23e56a773</citedby><cites>FETCH-LOGICAL-a414t-79f11b208ec128f7afda6cf901aaa4983afc8cc301eb525152a3af6c23e56a773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.earscirev.2023.104462$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2281851$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Jin, Zhenong</creatorcontrib><creatorcontrib>Peng, Bin</creatorcontrib><creatorcontrib>Tang, Jinyun</creatorcontrib><creatorcontrib>DeLucia, Evan H.</creatorcontrib><creatorcontrib>West, Paul C.</creatorcontrib><creatorcontrib>Jiang, Chongya</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Kim, Taegon</creatorcontrib><creatorcontrib>Zhou, Wang</creatorcontrib><creatorcontrib>Griffis, Tim</creatorcontrib><creatorcontrib>Liu, Licheng</creatorcontrib><creatorcontrib>Yang, Wendy H.</creatorcontrib><creatorcontrib>Qin, Ziqi</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Margenot, Andrew</creatorcontrib><creatorcontrib>Stuchiner, Emily R.</creatorcontrib><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Bernacchi, Carl</creatorcontrib><creatorcontrib>Coppess, Jonathan</creatorcontrib><creatorcontrib>Novick, Kimberly A.</creatorcontrib><creatorcontrib>Gerber, James</creatorcontrib><creatorcontrib>Jahn, Molly</creatorcontrib><creatorcontrib>Khanna, Madhu</creatorcontrib><creatorcontrib>Lee, DoKyoung</creatorcontrib><creatorcontrib>Chen, Zhangliang</creatorcontrib><creatorcontrib>Yang, Shang-Jen</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>A scalable framework for quantifying field-level agricultural carbon outcomes</title><title>Earth-science reviews</title><description>Agriculture contributes nearly a quarter of global greenhouse gas (GHG) emissions, which is motivating interest in adopting certain farming practices that have the potential to reduce GHG emissions or sequester carbon in soil. The related GHG emission (including N2O and CH4) and changes in soil carbon stock are defined here as “agricultural carbon outcomes”. Accurate quantification of agricultural carbon outcomes is the basis for achieving emission reductions for agriculture, but existing approaches for measuring carbon outcomes (including direct measurements, emission factors, and process-based modeling) fall short of achieving the required accuracy and scalability necessary to support credible, verifiable, and cost-effective measurement and improvement of these carbon outcomes. Here we propose a foundational and scalable framework to quantify field-level carbon outcomes for farmland, which is based on the holistic carbon balance of the agroecosystem: Agroecosystem Carbon Outcomes = Environment (E) × Management (M) × Crop (C). Following a comprehensive review of the scientific challenges associated with existing approaches, as well as their tradeoffs between cost and accuracy, we propose that the most viable path for the quantification of field-level carbon outcomes in agricultural land is through an effective integration of various approaches (e.g. diverse observations, sensor/in-situ data, and modeling), defined as the “System-of-Systems” solution. Such a “System-of-Systems” solution should simultaneously comprise the following components: (1) scalable collection of ground truth data and cross-scale sensing of environment variables (E), management practices (M), and crop conditions (C) at the local field level; (2) advanced modeling with necessary processes to support the quantification of carbon outcomes; (3) systematic Model-Data Fusion (MDF), i.e. robust and efficient methods to integrate sensing data and models at each local farmland level; (4) high computation efficiency and artificial intelligence (AI) to scale to millions of individual fields with low cost; and (5) robust and multi-tier validation systems and infrastructures to ensure solution fidelity and true scalability, i.e. the ability of a solution to perform robustly with accepted accuracy on all targeted fields. In this regard, we provide here the detailed scientific rationale, current progress, and future research and development (R&amp;D) priorities to achieve different components of the “System-of-Systems” solution, thus accomplishing the Environment×Management×Crop framework to quantify field-level agricultural carbon outcomes.</description><subject>Agroecosystem</subject><subject>Carbon outcomes</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>GHG quantification</subject><subject>Methane</subject><subject>Nitrous oxide</subject><subject>Soil organic carbon</subject><subject>System-of-Systems</subject><issn>0012-8252</issn><issn>1872-6828</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI3YHFPsZ2Xc6wqXlIRFzhbG2ddXNwY7KSof4-rIK6cVjuah2YIueZswRmvbrcLhBC1DbhfCCbyhBZFJU7IjMtaZJUU8pTMGOMik6IU5-Qixi1LP2vqGXle0qjBQeuQmgA7_Pbhgxof6NcI_WDNwfYbaiy6LnO4R0dhE6we3TAGcFRDaH1P_Thov8N4Sc4MuIhXv3dO3u7vXleP2frl4Wm1XGdQ8GLI6sZw3gomUXMhTQ2mg0qbhnEAKBqZg9FS65xxbEtR8lJAgiotciwrqOt8Tm4mXx8Hq1L5AfW79n2PelBCSC5Lnkj1RNLBxxjQqM9gdxAOijN1nE5t1d906jidmqZLyuWkxNRhbzEcI7DX2CVqSui8_dfjByHWfRg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Guan, Kaiyu</creator><creator>Jin, Zhenong</creator><creator>Peng, Bin</creator><creator>Tang, Jinyun</creator><creator>DeLucia, Evan H.</creator><creator>West, Paul C.</creator><creator>Jiang, Chongya</creator><creator>Wang, Sheng</creator><creator>Kim, Taegon</creator><creator>Zhou, Wang</creator><creator>Griffis, Tim</creator><creator>Liu, Licheng</creator><creator>Yang, Wendy H.</creator><creator>Qin, Ziqi</creator><creator>Yang, Qi</creator><creator>Margenot, Andrew</creator><creator>Stuchiner, Emily R.</creator><creator>Kumar, Vipin</creator><creator>Bernacchi, Carl</creator><creator>Coppess, Jonathan</creator><creator>Novick, Kimberly A.</creator><creator>Gerber, James</creator><creator>Jahn, Molly</creator><creator>Khanna, Madhu</creator><creator>Lee, DoKyoung</creator><creator>Chen, Zhangliang</creator><creator>Yang, Shang-Jen</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20230801</creationdate><title>A scalable framework for quantifying field-level agricultural carbon outcomes</title><author>Guan, Kaiyu ; Jin, Zhenong ; Peng, Bin ; Tang, Jinyun ; DeLucia, Evan H. ; West, Paul C. ; Jiang, Chongya ; Wang, Sheng ; Kim, Taegon ; Zhou, Wang ; Griffis, Tim ; Liu, Licheng ; Yang, Wendy H. ; Qin, Ziqi ; Yang, Qi ; Margenot, Andrew ; Stuchiner, Emily R. ; Kumar, Vipin ; Bernacchi, Carl ; Coppess, Jonathan ; Novick, Kimberly A. ; Gerber, James ; Jahn, Molly ; Khanna, Madhu ; Lee, DoKyoung ; Chen, Zhangliang ; Yang, Shang-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-79f11b208ec128f7afda6cf901aaa4983afc8cc301eb525152a3af6c23e56a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agroecosystem</topic><topic>Carbon outcomes</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>GHG quantification</topic><topic>Methane</topic><topic>Nitrous oxide</topic><topic>Soil organic carbon</topic><topic>System-of-Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Kaiyu</creatorcontrib><creatorcontrib>Jin, Zhenong</creatorcontrib><creatorcontrib>Peng, Bin</creatorcontrib><creatorcontrib>Tang, Jinyun</creatorcontrib><creatorcontrib>DeLucia, Evan H.</creatorcontrib><creatorcontrib>West, Paul C.</creatorcontrib><creatorcontrib>Jiang, Chongya</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Kim, Taegon</creatorcontrib><creatorcontrib>Zhou, Wang</creatorcontrib><creatorcontrib>Griffis, Tim</creatorcontrib><creatorcontrib>Liu, Licheng</creatorcontrib><creatorcontrib>Yang, Wendy H.</creatorcontrib><creatorcontrib>Qin, Ziqi</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Margenot, Andrew</creatorcontrib><creatorcontrib>Stuchiner, Emily R.</creatorcontrib><creatorcontrib>Kumar, Vipin</creatorcontrib><creatorcontrib>Bernacchi, Carl</creatorcontrib><creatorcontrib>Coppess, Jonathan</creatorcontrib><creatorcontrib>Novick, Kimberly A.</creatorcontrib><creatorcontrib>Gerber, James</creatorcontrib><creatorcontrib>Jahn, Molly</creatorcontrib><creatorcontrib>Khanna, Madhu</creatorcontrib><creatorcontrib>Lee, DoKyoung</creatorcontrib><creatorcontrib>Chen, Zhangliang</creatorcontrib><creatorcontrib>Yang, Shang-Jen</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Earth-science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Kaiyu</au><au>Jin, Zhenong</au><au>Peng, Bin</au><au>Tang, Jinyun</au><au>DeLucia, Evan H.</au><au>West, Paul C.</au><au>Jiang, Chongya</au><au>Wang, Sheng</au><au>Kim, Taegon</au><au>Zhou, Wang</au><au>Griffis, Tim</au><au>Liu, Licheng</au><au>Yang, Wendy H.</au><au>Qin, Ziqi</au><au>Yang, Qi</au><au>Margenot, Andrew</au><au>Stuchiner, Emily R.</au><au>Kumar, Vipin</au><au>Bernacchi, Carl</au><au>Coppess, Jonathan</au><au>Novick, Kimberly A.</au><au>Gerber, James</au><au>Jahn, Molly</au><au>Khanna, Madhu</au><au>Lee, DoKyoung</au><au>Chen, Zhangliang</au><au>Yang, Shang-Jen</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A scalable framework for quantifying field-level agricultural carbon outcomes</atitle><jtitle>Earth-science reviews</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>243</volume><spage>104462</spage><pages>104462-</pages><artnum>104462</artnum><issn>0012-8252</issn><eissn>1872-6828</eissn><abstract>Agriculture contributes nearly a quarter of global greenhouse gas (GHG) emissions, which is motivating interest in adopting certain farming practices that have the potential to reduce GHG emissions or sequester carbon in soil. The related GHG emission (including N2O and CH4) and changes in soil carbon stock are defined here as “agricultural carbon outcomes”. Accurate quantification of agricultural carbon outcomes is the basis for achieving emission reductions for agriculture, but existing approaches for measuring carbon outcomes (including direct measurements, emission factors, and process-based modeling) fall short of achieving the required accuracy and scalability necessary to support credible, verifiable, and cost-effective measurement and improvement of these carbon outcomes. Here we propose a foundational and scalable framework to quantify field-level carbon outcomes for farmland, which is based on the holistic carbon balance of the agroecosystem: Agroecosystem Carbon Outcomes = Environment (E) × Management (M) × Crop (C). Following a comprehensive review of the scientific challenges associated with existing approaches, as well as their tradeoffs between cost and accuracy, we propose that the most viable path for the quantification of field-level carbon outcomes in agricultural land is through an effective integration of various approaches (e.g. diverse observations, sensor/in-situ data, and modeling), defined as the “System-of-Systems” solution. Such a “System-of-Systems” solution should simultaneously comprise the following components: (1) scalable collection of ground truth data and cross-scale sensing of environment variables (E), management practices (M), and crop conditions (C) at the local field level; (2) advanced modeling with necessary processes to support the quantification of carbon outcomes; (3) systematic Model-Data Fusion (MDF), i.e. robust and efficient methods to integrate sensing data and models at each local farmland level; (4) high computation efficiency and artificial intelligence (AI) to scale to millions of individual fields with low cost; and (5) robust and multi-tier validation systems and infrastructures to ensure solution fidelity and true scalability, i.e. the ability of a solution to perform robustly with accepted accuracy on all targeted fields. In this regard, we provide here the detailed scientific rationale, current progress, and future research and development (R&amp;D) priorities to achieve different components of the “System-of-Systems” solution, thus accomplishing the Environment×Management×Crop framework to quantify field-level agricultural carbon outcomes.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.earscirev.2023.104462</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-8252
ispartof Earth-science reviews, 2023-08, Vol.243, p.104462, Article 104462
issn 0012-8252
1872-6828
language eng
recordid cdi_osti_scitechconnect_2281851
source Access via ScienceDirect (Elsevier)
subjects Agroecosystem
Carbon outcomes
ENVIRONMENTAL SCIENCES
GHG quantification
Methane
Nitrous oxide
Soil organic carbon
System-of-Systems
title A scalable framework for quantifying field-level agricultural carbon outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20scalable%20framework%20for%20quantifying%20field-level%20agricultural%20carbon%20outcomes&rft.jtitle=Earth-science%20reviews&rft.au=Guan,%20Kaiyu&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2023-08-01&rft.volume=243&rft.spage=104462&rft.pages=104462-&rft.artnum=104462&rft.issn=0012-8252&rft.eissn=1872-6828&rft_id=info:doi/10.1016/j.earscirev.2023.104462&rft_dat=%3Celsevier_osti_%3ES0012825223001514%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0012825223001514&rfr_iscdi=true