Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar
Summary Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed po...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2024-06, Vol.22 (6), p.1596-1609 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1609 |
---|---|
container_issue | 6 |
container_start_page | 1596 |
container_title | Plant biotechnology journal |
container_volume | 22 |
creator | Yang, Yongil Chaffin, Timothy A. Shao, Yuanhua Balasubramanian, Vimal K. Markillie, Meng Mitchell, Hugh Rubio‐Wilhelmi, Maria M. Ahkami, Amir H. Blumwald, Eduardo Neal Stewart, C. |
description | Summary
Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed poplar (Populus tremula × Populus alba), collected through low‐input RNA‐seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20‐base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5′ and 3′ regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3‐10b‐1 (5′: GTTAACTTCA) and Syn3‐10b‐2 (3′: GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3‐10b‐1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3‐10b‐1 had stronger induction in green tissues under water‐deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5′ sequence of Syn3 endowed both tissue‐specificity and water‐deficit inducibility in transgenic poplar, whereas the 3′ sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3‐10b‐1, a green tissue‐specific and water‐deficit stress‐induced promoter, and Syn3, a green tissue‐preferential constitutive promoter. |
doi_str_mv | 10.1111/pbi.14289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2281624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059314738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4489-27d880e4196723128aedc453e4c04e6471f45e49159b20bd7121c2a5de4e073a3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiNERUthwQsgCzawmNbXxFlCBbRSBSxgbTnOmRlXGTv4OAyz4xH6jDwJnqbtAqnCG1_06Tvn-K-qF4yesLJOx86fMMl1-6g6YrJuFk2t-OP7s5SH1VPEK0o5q1X9pDoUmgterkfV9ef4EwaCu5DXkL0jPvST890AZExxEzMkJC6GnOIw-LAiKwhA4NeYANHHQPop7Z-3tpB_fl_3sPTOZ4J5D5Ctz2uySgCBZI84AcERnL9hdqUWyckGLM5SeYzjYNOz6mBpB4Tnt_tx9f3jh29n54vLL58uzt5dLpyUul3wpteagmRt3XDBuLbQO6kESEcl1LJhS6lAtky1Hadd3zDOHLeqBwm0EVYcV69mb8TsDZZ-wK3LoAFcNpxrVnNZoDczVP7ixwSYzcajg2GwAeKERjAlVClG2_-ivGW1pLple-vrf9CrOKVQpjWCqlYw2QhdqLcz5VJETLA0Y_Ibm3aGUbOP3ZTYzU3shX15a5y6DfT35F3OBTidga0fYPewyXx9fzEr_wIVjbk6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059314738</pqid></control><display><type>article</type><title>Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Yongil ; Chaffin, Timothy A. ; Shao, Yuanhua ; Balasubramanian, Vimal K. ; Markillie, Meng ; Mitchell, Hugh ; Rubio‐Wilhelmi, Maria M. ; Ahkami, Amir H. ; Blumwald, Eduardo ; Neal Stewart, C.</creator><creatorcontrib>Yang, Yongil ; Chaffin, Timothy A. ; Shao, Yuanhua ; Balasubramanian, Vimal K. ; Markillie, Meng ; Mitchell, Hugh ; Rubio‐Wilhelmi, Maria M. ; Ahkami, Amir H. ; Blumwald, Eduardo ; Neal Stewart, C. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Summary
Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed poplar (Populus tremula × Populus alba), collected through low‐input RNA‐seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20‐base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5′ and 3′ regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3‐10b‐1 (5′: GTTAACTTCA) and Syn3‐10b‐2 (3′: GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3‐10b‐1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3‐10b‐1 had stronger induction in green tissues under water‐deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5′ sequence of Syn3 endowed both tissue‐specificity and water‐deficit inducibility in transgenic poplar, whereas the 3′ sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3‐10b‐1, a green tissue‐specific and water‐deficit stress‐induced promoter, and Syn3, a green tissue‐preferential constitutive promoter.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14289</identifier><identifier>PMID: 38232002</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biodiesel fuels ; Biofuels ; biotechnology ; Cloning ; Dehydration - genetics ; DNA ; Gene expression ; Gene Expression Regulation, Plant ; Gene sequencing ; genetically modified organisms ; green tissue specific promoter ; laser capture microdissection ; Leaves ; Mannitol ; Mesophyll ; Nicotiana benthamiana ; Nucleotide sequence ; Organ Specificity - genetics ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plants, Genetically Modified - genetics ; Poplar ; Populus ; Populus - genetics ; Populus - metabolism ; Populus alba ; Populus tremula ; promoter regions ; Promoter Regions, Genetic - genetics ; Promoters ; Protoplasts ; Regulatory sequences ; Rice ; RNA polymerase ; Seeds ; sequence analysis ; Soybeans ; Stress, Physiological - genetics ; Synthetic biology ; synthetic promoter ; Tissues ; Transcription factors ; water stress ; water-deficit stress</subject><ispartof>Plant biotechnology journal, 2024-06, Vol.22 (6), p.1596-1609</ispartof><rights>2024 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4489-27d880e4196723128aedc453e4c04e6471f45e49159b20bd7121c2a5de4e073a3</citedby><cites>FETCH-LOGICAL-c4489-27d880e4196723128aedc453e4c04e6471f45e49159b20bd7121c2a5de4e073a3</cites><orcidid>0000-0003-3026-9193 ; 0000-0002-6449-6469 ; 0000000264496469 ; 0000000330269193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.14289$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.14289$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11542,27903,27904,45553,45554,46030,46454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38232002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2281624$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yongil</creatorcontrib><creatorcontrib>Chaffin, Timothy A.</creatorcontrib><creatorcontrib>Shao, Yuanhua</creatorcontrib><creatorcontrib>Balasubramanian, Vimal K.</creatorcontrib><creatorcontrib>Markillie, Meng</creatorcontrib><creatorcontrib>Mitchell, Hugh</creatorcontrib><creatorcontrib>Rubio‐Wilhelmi, Maria M.</creatorcontrib><creatorcontrib>Ahkami, Amir H.</creatorcontrib><creatorcontrib>Blumwald, Eduardo</creatorcontrib><creatorcontrib>Neal Stewart, C.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed poplar (Populus tremula × Populus alba), collected through low‐input RNA‐seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20‐base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5′ and 3′ regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3‐10b‐1 (5′: GTTAACTTCA) and Syn3‐10b‐2 (3′: GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3‐10b‐1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3‐10b‐1 had stronger induction in green tissues under water‐deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5′ sequence of Syn3 endowed both tissue‐specificity and water‐deficit inducibility in transgenic poplar, whereas the 3′ sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3‐10b‐1, a green tissue‐specific and water‐deficit stress‐induced promoter, and Syn3, a green tissue‐preferential constitutive promoter.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>biotechnology</subject><subject>Cloning</subject><subject>Dehydration - genetics</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene sequencing</subject><subject>genetically modified organisms</subject><subject>green tissue specific promoter</subject><subject>laser capture microdissection</subject><subject>Leaves</subject><subject>Mannitol</subject><subject>Mesophyll</subject><subject>Nicotiana benthamiana</subject><subject>Nucleotide sequence</subject><subject>Organ Specificity - genetics</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Poplar</subject><subject>Populus</subject><subject>Populus - genetics</subject><subject>Populus - metabolism</subject><subject>Populus alba</subject><subject>Populus tremula</subject><subject>promoter regions</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Promoters</subject><subject>Protoplasts</subject><subject>Regulatory sequences</subject><subject>Rice</subject><subject>RNA polymerase</subject><subject>Seeds</subject><subject>sequence analysis</subject><subject>Soybeans</subject><subject>Stress, Physiological - genetics</subject><subject>Synthetic biology</subject><subject>synthetic promoter</subject><subject>Tissues</subject><subject>Transcription factors</subject><subject>water stress</subject><subject>water-deficit stress</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1DAUhiNERUthwQsgCzawmNbXxFlCBbRSBSxgbTnOmRlXGTv4OAyz4xH6jDwJnqbtAqnCG1_06Tvn-K-qF4yesLJOx86fMMl1-6g6YrJuFk2t-OP7s5SH1VPEK0o5q1X9pDoUmgterkfV9ef4EwaCu5DXkL0jPvST890AZExxEzMkJC6GnOIw-LAiKwhA4NeYANHHQPop7Z-3tpB_fl_3sPTOZ4J5D5Ctz2uySgCBZI84AcERnL9hdqUWyckGLM5SeYzjYNOz6mBpB4Tnt_tx9f3jh29n54vLL58uzt5dLpyUul3wpteagmRt3XDBuLbQO6kESEcl1LJhS6lAtky1Hadd3zDOHLeqBwm0EVYcV69mb8TsDZZ-wK3LoAFcNpxrVnNZoDczVP7ixwSYzcajg2GwAeKERjAlVClG2_-ivGW1pLple-vrf9CrOKVQpjWCqlYw2QhdqLcz5VJETLA0Y_Ibm3aGUbOP3ZTYzU3shX15a5y6DfT35F3OBTidga0fYPewyXx9fzEr_wIVjbk6</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Yang, Yongil</creator><creator>Chaffin, Timothy A.</creator><creator>Shao, Yuanhua</creator><creator>Balasubramanian, Vimal K.</creator><creator>Markillie, Meng</creator><creator>Mitchell, Hugh</creator><creator>Rubio‐Wilhelmi, Maria M.</creator><creator>Ahkami, Amir H.</creator><creator>Blumwald, Eduardo</creator><creator>Neal Stewart, C.</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3026-9193</orcidid><orcidid>https://orcid.org/0000-0002-6449-6469</orcidid><orcidid>https://orcid.org/0000000264496469</orcidid><orcidid>https://orcid.org/0000000330269193</orcidid></search><sort><creationdate>202406</creationdate><title>Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar</title><author>Yang, Yongil ; Chaffin, Timothy A. ; Shao, Yuanhua ; Balasubramanian, Vimal K. ; Markillie, Meng ; Mitchell, Hugh ; Rubio‐Wilhelmi, Maria M. ; Ahkami, Amir H. ; Blumwald, Eduardo ; Neal Stewart, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4489-27d880e4196723128aedc453e4c04e6471f45e49159b20bd7121c2a5de4e073a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>biotechnology</topic><topic>Cloning</topic><topic>Dehydration - genetics</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene sequencing</topic><topic>genetically modified organisms</topic><topic>green tissue specific promoter</topic><topic>laser capture microdissection</topic><topic>Leaves</topic><topic>Mannitol</topic><topic>Mesophyll</topic><topic>Nicotiana benthamiana</topic><topic>Nucleotide sequence</topic><topic>Organ Specificity - genetics</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Poplar</topic><topic>Populus</topic><topic>Populus - genetics</topic><topic>Populus - metabolism</topic><topic>Populus alba</topic><topic>Populus tremula</topic><topic>promoter regions</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Promoters</topic><topic>Protoplasts</topic><topic>Regulatory sequences</topic><topic>Rice</topic><topic>RNA polymerase</topic><topic>Seeds</topic><topic>sequence analysis</topic><topic>Soybeans</topic><topic>Stress, Physiological - genetics</topic><topic>Synthetic biology</topic><topic>synthetic promoter</topic><topic>Tissues</topic><topic>Transcription factors</topic><topic>water stress</topic><topic>water-deficit stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yongil</creatorcontrib><creatorcontrib>Chaffin, Timothy A.</creatorcontrib><creatorcontrib>Shao, Yuanhua</creatorcontrib><creatorcontrib>Balasubramanian, Vimal K.</creatorcontrib><creatorcontrib>Markillie, Meng</creatorcontrib><creatorcontrib>Mitchell, Hugh</creatorcontrib><creatorcontrib>Rubio‐Wilhelmi, Maria M.</creatorcontrib><creatorcontrib>Ahkami, Amir H.</creatorcontrib><creatorcontrib>Blumwald, Eduardo</creatorcontrib><creatorcontrib>Neal Stewart, C.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yongil</au><au>Chaffin, Timothy A.</au><au>Shao, Yuanhua</au><au>Balasubramanian, Vimal K.</au><au>Markillie, Meng</au><au>Mitchell, Hugh</au><au>Rubio‐Wilhelmi, Maria M.</au><au>Ahkami, Amir H.</au><au>Blumwald, Eduardo</au><au>Neal Stewart, C.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2024-06</date><risdate>2024</risdate><volume>22</volume><issue>6</issue><spage>1596</spage><epage>1609</epage><pages>1596-1609</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed poplar (Populus tremula × Populus alba), collected through low‐input RNA‐seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20‐base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5′ and 3′ regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3‐10b‐1 (5′: GTTAACTTCA) and Syn3‐10b‐2 (3′: GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3‐10b‐1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3‐10b‐1 had stronger induction in green tissues under water‐deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5′ sequence of Syn3 endowed both tissue‐specificity and water‐deficit inducibility in transgenic poplar, whereas the 3′ sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3‐10b‐1, a green tissue‐specific and water‐deficit stress‐induced promoter, and Syn3, a green tissue‐preferential constitutive promoter.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>38232002</pmid><doi>10.1111/pbi.14289</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3026-9193</orcidid><orcidid>https://orcid.org/0000-0002-6449-6469</orcidid><orcidid>https://orcid.org/0000000264496469</orcidid><orcidid>https://orcid.org/0000000330269193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2024-06, Vol.22 (6), p.1596-1609 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_osti_scitechconnect_2281624 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | BASIC BIOLOGICAL SCIENCES Biodiesel fuels Biofuels biotechnology Cloning Dehydration - genetics DNA Gene expression Gene Expression Regulation, Plant Gene sequencing genetically modified organisms green tissue specific promoter laser capture microdissection Leaves Mannitol Mesophyll Nicotiana benthamiana Nucleotide sequence Organ Specificity - genetics Plant Leaves - genetics Plant Leaves - metabolism Plants, Genetically Modified - genetics Poplar Populus Populus - genetics Populus - metabolism Populus alba Populus tremula promoter regions Promoter Regions, Genetic - genetics Promoters Protoplasts Regulatory sequences Rice RNA polymerase Seeds sequence analysis Soybeans Stress, Physiological - genetics Synthetic biology synthetic promoter Tissues Transcription factors water stress water-deficit stress |
title | Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20synthetic%20inducible%20promoters%20controlling%20gene%20expression%20during%20water%E2%80%90deficit%20stress%20with%20green%20tissue%20specificity%20in%20transgenic%20poplar&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Yang,%20Yongil&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-06&rft.volume=22&rft.issue=6&rft.spage=1596&rft.epage=1609&rft.pages=1596-1609&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14289&rft_dat=%3Cproquest_osti_%3E3059314738%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059314738&rft_id=info:pmid/38232002&rfr_iscdi=true |