Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar

Summary Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2024-06, Vol.22 (6), p.1596-1609
Hauptverfasser: Yang, Yongil, Chaffin, Timothy A., Shao, Yuanhua, Balasubramanian, Vimal K., Markillie, Meng, Mitchell, Hugh, Rubio‐Wilhelmi, Maria M., Ahkami, Amir H., Blumwald, Eduardo, Neal Stewart, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1609
container_issue 6
container_start_page 1596
container_title Plant biotechnology journal
container_volume 22
creator Yang, Yongil
Chaffin, Timothy A.
Shao, Yuanhua
Balasubramanian, Vimal K.
Markillie, Meng
Mitchell, Hugh
Rubio‐Wilhelmi, Maria M.
Ahkami, Amir H.
Blumwald, Eduardo
Neal Stewart, C.
description Summary Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed poplar (Populus tremula × Populus alba), collected through low‐input RNA‐seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20‐base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5′ and 3′ regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3‐10b‐1 (5′: GTTAACTTCA) and Syn3‐10b‐2 (3′: GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3‐10b‐1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3‐10b‐1 had stronger induction in green tissues under water‐deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5′ sequence of Syn3 endowed both tissue‐specificity and water‐deficit inducibility in transgenic poplar, whereas the 3′ sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3‐10b‐1, a green tissue‐specific and water‐deficit stress‐induced promoter, and Syn3, a green tissue‐preferential constitutive promoter.
doi_str_mv 10.1111/pbi.14289
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2281624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059314738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4489-27d880e4196723128aedc453e4c04e6471f45e49159b20bd7121c2a5de4e073a3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiNERUthwQsgCzawmNbXxFlCBbRSBSxgbTnOmRlXGTv4OAyz4xH6jDwJnqbtAqnCG1_06Tvn-K-qF4yesLJOx86fMMl1-6g6YrJuFk2t-OP7s5SH1VPEK0o5q1X9pDoUmgterkfV9ef4EwaCu5DXkL0jPvST890AZExxEzMkJC6GnOIw-LAiKwhA4NeYANHHQPop7Z-3tpB_fl_3sPTOZ4J5D5Ctz2uySgCBZI84AcERnL9hdqUWyckGLM5SeYzjYNOz6mBpB4Tnt_tx9f3jh29n54vLL58uzt5dLpyUul3wpteagmRt3XDBuLbQO6kESEcl1LJhS6lAtky1Hadd3zDOHLeqBwm0EVYcV69mb8TsDZZ-wK3LoAFcNpxrVnNZoDczVP7ixwSYzcajg2GwAeKERjAlVClG2_-ivGW1pLple-vrf9CrOKVQpjWCqlYw2QhdqLcz5VJETLA0Y_Ibm3aGUbOP3ZTYzU3shX15a5y6DfT35F3OBTidga0fYPewyXx9fzEr_wIVjbk6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059314738</pqid></control><display><type>article</type><title>Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Yongil ; Chaffin, Timothy A. ; Shao, Yuanhua ; Balasubramanian, Vimal K. ; Markillie, Meng ; Mitchell, Hugh ; Rubio‐Wilhelmi, Maria M. ; Ahkami, Amir H. ; Blumwald, Eduardo ; Neal Stewart, C.</creator><creatorcontrib>Yang, Yongil ; Chaffin, Timothy A. ; Shao, Yuanhua ; Balasubramanian, Vimal K. ; Markillie, Meng ; Mitchell, Hugh ; Rubio‐Wilhelmi, Maria M. ; Ahkami, Amir H. ; Blumwald, Eduardo ; Neal Stewart, C. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Summary Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed poplar (Populus tremula × Populus alba), collected through low‐input RNA‐seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20‐base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5′ and 3′ regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3‐10b‐1 (5′: GTTAACTTCA) and Syn3‐10b‐2 (3′: GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3‐10b‐1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3‐10b‐1 had stronger induction in green tissues under water‐deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5′ sequence of Syn3 endowed both tissue‐specificity and water‐deficit inducibility in transgenic poplar, whereas the 3′ sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3‐10b‐1, a green tissue‐specific and water‐deficit stress‐induced promoter, and Syn3, a green tissue‐preferential constitutive promoter.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14289</identifier><identifier>PMID: 38232002</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Biodiesel fuels ; Biofuels ; biotechnology ; Cloning ; Dehydration - genetics ; DNA ; Gene expression ; Gene Expression Regulation, Plant ; Gene sequencing ; genetically modified organisms ; green tissue specific promoter ; laser capture microdissection ; Leaves ; Mannitol ; Mesophyll ; Nicotiana benthamiana ; Nucleotide sequence ; Organ Specificity - genetics ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plants, Genetically Modified - genetics ; Poplar ; Populus ; Populus - genetics ; Populus - metabolism ; Populus alba ; Populus tremula ; promoter regions ; Promoter Regions, Genetic - genetics ; Promoters ; Protoplasts ; Regulatory sequences ; Rice ; RNA polymerase ; Seeds ; sequence analysis ; Soybeans ; Stress, Physiological - genetics ; Synthetic biology ; synthetic promoter ; Tissues ; Transcription factors ; water stress ; water-deficit stress</subject><ispartof>Plant biotechnology journal, 2024-06, Vol.22 (6), p.1596-1609</ispartof><rights>2024 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4489-27d880e4196723128aedc453e4c04e6471f45e49159b20bd7121c2a5de4e073a3</citedby><cites>FETCH-LOGICAL-c4489-27d880e4196723128aedc453e4c04e6471f45e49159b20bd7121c2a5de4e073a3</cites><orcidid>0000-0003-3026-9193 ; 0000-0002-6449-6469 ; 0000000264496469 ; 0000000330269193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.14289$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.14289$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11542,27903,27904,45553,45554,46030,46454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38232002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2281624$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yongil</creatorcontrib><creatorcontrib>Chaffin, Timothy A.</creatorcontrib><creatorcontrib>Shao, Yuanhua</creatorcontrib><creatorcontrib>Balasubramanian, Vimal K.</creatorcontrib><creatorcontrib>Markillie, Meng</creatorcontrib><creatorcontrib>Mitchell, Hugh</creatorcontrib><creatorcontrib>Rubio‐Wilhelmi, Maria M.</creatorcontrib><creatorcontrib>Ahkami, Amir H.</creatorcontrib><creatorcontrib>Blumwald, Eduardo</creatorcontrib><creatorcontrib>Neal Stewart, C.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed poplar (Populus tremula × Populus alba), collected through low‐input RNA‐seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20‐base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5′ and 3′ regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3‐10b‐1 (5′: GTTAACTTCA) and Syn3‐10b‐2 (3′: GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3‐10b‐1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3‐10b‐1 had stronger induction in green tissues under water‐deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5′ sequence of Syn3 endowed both tissue‐specificity and water‐deficit inducibility in transgenic poplar, whereas the 3′ sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3‐10b‐1, a green tissue‐specific and water‐deficit stress‐induced promoter, and Syn3, a green tissue‐preferential constitutive promoter.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>biotechnology</subject><subject>Cloning</subject><subject>Dehydration - genetics</subject><subject>DNA</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene sequencing</subject><subject>genetically modified organisms</subject><subject>green tissue specific promoter</subject><subject>laser capture microdissection</subject><subject>Leaves</subject><subject>Mannitol</subject><subject>Mesophyll</subject><subject>Nicotiana benthamiana</subject><subject>Nucleotide sequence</subject><subject>Organ Specificity - genetics</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Poplar</subject><subject>Populus</subject><subject>Populus - genetics</subject><subject>Populus - metabolism</subject><subject>Populus alba</subject><subject>Populus tremula</subject><subject>promoter regions</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Promoters</subject><subject>Protoplasts</subject><subject>Regulatory sequences</subject><subject>Rice</subject><subject>RNA polymerase</subject><subject>Seeds</subject><subject>sequence analysis</subject><subject>Soybeans</subject><subject>Stress, Physiological - genetics</subject><subject>Synthetic biology</subject><subject>synthetic promoter</subject><subject>Tissues</subject><subject>Transcription factors</subject><subject>water stress</subject><subject>water-deficit stress</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1DAUhiNERUthwQsgCzawmNbXxFlCBbRSBSxgbTnOmRlXGTv4OAyz4xH6jDwJnqbtAqnCG1_06Tvn-K-qF4yesLJOx86fMMl1-6g6YrJuFk2t-OP7s5SH1VPEK0o5q1X9pDoUmgterkfV9ef4EwaCu5DXkL0jPvST890AZExxEzMkJC6GnOIw-LAiKwhA4NeYANHHQPop7Z-3tpB_fl_3sPTOZ4J5D5Ctz2uySgCBZI84AcERnL9hdqUWyckGLM5SeYzjYNOz6mBpB4Tnt_tx9f3jh29n54vLL58uzt5dLpyUul3wpteagmRt3XDBuLbQO6kESEcl1LJhS6lAtky1Hadd3zDOHLeqBwm0EVYcV69mb8TsDZZ-wK3LoAFcNpxrVnNZoDczVP7ixwSYzcajg2GwAeKERjAlVClG2_-ivGW1pLple-vrf9CrOKVQpjWCqlYw2QhdqLcz5VJETLA0Y_Ibm3aGUbOP3ZTYzU3shX15a5y6DfT35F3OBTidga0fYPewyXx9fzEr_wIVjbk6</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Yang, Yongil</creator><creator>Chaffin, Timothy A.</creator><creator>Shao, Yuanhua</creator><creator>Balasubramanian, Vimal K.</creator><creator>Markillie, Meng</creator><creator>Mitchell, Hugh</creator><creator>Rubio‐Wilhelmi, Maria M.</creator><creator>Ahkami, Amir H.</creator><creator>Blumwald, Eduardo</creator><creator>Neal Stewart, C.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3026-9193</orcidid><orcidid>https://orcid.org/0000-0002-6449-6469</orcidid><orcidid>https://orcid.org/0000000264496469</orcidid><orcidid>https://orcid.org/0000000330269193</orcidid></search><sort><creationdate>202406</creationdate><title>Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar</title><author>Yang, Yongil ; Chaffin, Timothy A. ; Shao, Yuanhua ; Balasubramanian, Vimal K. ; Markillie, Meng ; Mitchell, Hugh ; Rubio‐Wilhelmi, Maria M. ; Ahkami, Amir H. ; Blumwald, Eduardo ; Neal Stewart, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4489-27d880e4196723128aedc453e4c04e6471f45e49159b20bd7121c2a5de4e073a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>biotechnology</topic><topic>Cloning</topic><topic>Dehydration - genetics</topic><topic>DNA</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene sequencing</topic><topic>genetically modified organisms</topic><topic>green tissue specific promoter</topic><topic>laser capture microdissection</topic><topic>Leaves</topic><topic>Mannitol</topic><topic>Mesophyll</topic><topic>Nicotiana benthamiana</topic><topic>Nucleotide sequence</topic><topic>Organ Specificity - genetics</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Poplar</topic><topic>Populus</topic><topic>Populus - genetics</topic><topic>Populus - metabolism</topic><topic>Populus alba</topic><topic>Populus tremula</topic><topic>promoter regions</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Promoters</topic><topic>Protoplasts</topic><topic>Regulatory sequences</topic><topic>Rice</topic><topic>RNA polymerase</topic><topic>Seeds</topic><topic>sequence analysis</topic><topic>Soybeans</topic><topic>Stress, Physiological - genetics</topic><topic>Synthetic biology</topic><topic>synthetic promoter</topic><topic>Tissues</topic><topic>Transcription factors</topic><topic>water stress</topic><topic>water-deficit stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yongil</creatorcontrib><creatorcontrib>Chaffin, Timothy A.</creatorcontrib><creatorcontrib>Shao, Yuanhua</creatorcontrib><creatorcontrib>Balasubramanian, Vimal K.</creatorcontrib><creatorcontrib>Markillie, Meng</creatorcontrib><creatorcontrib>Mitchell, Hugh</creatorcontrib><creatorcontrib>Rubio‐Wilhelmi, Maria M.</creatorcontrib><creatorcontrib>Ahkami, Amir H.</creatorcontrib><creatorcontrib>Blumwald, Eduardo</creatorcontrib><creatorcontrib>Neal Stewart, C.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yongil</au><au>Chaffin, Timothy A.</au><au>Shao, Yuanhua</au><au>Balasubramanian, Vimal K.</au><au>Markillie, Meng</au><au>Mitchell, Hugh</au><au>Rubio‐Wilhelmi, Maria M.</au><au>Ahkami, Amir H.</au><au>Blumwald, Eduardo</au><au>Neal Stewart, C.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2024-06</date><risdate>2024</risdate><volume>22</volume><issue>6</issue><spage>1596</spage><epage>1609</epage><pages>1596-1609</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Synthetic promoters may be designed using short cis‐regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type‐specific expressed genes in water‐deficit stressed poplar (Populus tremula × Populus alba), collected through low‐input RNA‐seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20‐base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5′ and 3′ regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3‐10b‐1 (5′: GTTAACTTCA) and Syn3‐10b‐2 (3′: GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3‐10b‐1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3‐10b‐1 had stronger induction in green tissues under water‐deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5′ sequence of Syn3 endowed both tissue‐specificity and water‐deficit inducibility in transgenic poplar, whereas the 3′ sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3‐10b‐1, a green tissue‐specific and water‐deficit stress‐induced promoter, and Syn3, a green tissue‐preferential constitutive promoter.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38232002</pmid><doi>10.1111/pbi.14289</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3026-9193</orcidid><orcidid>https://orcid.org/0000-0002-6449-6469</orcidid><orcidid>https://orcid.org/0000000264496469</orcidid><orcidid>https://orcid.org/0000000330269193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2024-06, Vol.22 (6), p.1596-1609
issn 1467-7644
1467-7652
language eng
recordid cdi_osti_scitechconnect_2281624
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals
subjects BASIC BIOLOGICAL SCIENCES
Biodiesel fuels
Biofuels
biotechnology
Cloning
Dehydration - genetics
DNA
Gene expression
Gene Expression Regulation, Plant
Gene sequencing
genetically modified organisms
green tissue specific promoter
laser capture microdissection
Leaves
Mannitol
Mesophyll
Nicotiana benthamiana
Nucleotide sequence
Organ Specificity - genetics
Plant Leaves - genetics
Plant Leaves - metabolism
Plants, Genetically Modified - genetics
Poplar
Populus
Populus - genetics
Populus - metabolism
Populus alba
Populus tremula
promoter regions
Promoter Regions, Genetic - genetics
Promoters
Protoplasts
Regulatory sequences
Rice
RNA polymerase
Seeds
sequence analysis
Soybeans
Stress, Physiological - genetics
Synthetic biology
synthetic promoter
Tissues
Transcription factors
water stress
water-deficit stress
title Novel synthetic inducible promoters controlling gene expression during water‐deficit stress with green tissue specificity in transgenic poplar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20synthetic%20inducible%20promoters%20controlling%20gene%20expression%20during%20water%E2%80%90deficit%20stress%20with%20green%20tissue%20specificity%20in%20transgenic%20poplar&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Yang,%20Yongil&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-06&rft.volume=22&rft.issue=6&rft.spage=1596&rft.epage=1609&rft.pages=1596-1609&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14289&rft_dat=%3Cproquest_osti_%3E3059314738%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059314738&rft_id=info:pmid/38232002&rfr_iscdi=true