Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater
Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal compone...
Gespeichert in:
Veröffentlicht in: | Journal of applied spectroscopy 2017-11, Vol.84 (5), p.804-810 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 810 |
---|---|
container_issue | 5 |
container_start_page | 804 |
container_title | Journal of applied spectroscopy |
container_volume | 84 |
creator | Mai, W. Zhang, J.-F. Zhao, X.-M. Li, Z. Xu, Z.-W. |
description | Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring. |
doi_str_mv | 10.1007/s10812-017-0548-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22810303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A521162706</galeid><sourcerecordid>A521162706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4c01f7b4c30a36e3f33efbdb046d80c148c6cb0da49dd5a44a29e3b71943b1773</originalsourceid><addsrcrecordid>eNp1ksFu1DAQhiMEEkvbB-BmiROHlHHsjZNjtVCotKhVt4Wj5TiTrKvE3toOdB-E98VRkKAH5MOMrP8b_2P9WfaWwjkFEB8ChYoWOVCRw5pXefkiW9G1YHlVcvEyWwEUNK-BidfZmxAeAKCuClhlv26Uj0YNZIsqRLJ7nJTHQG6xTyUYZ8lGDabxKs6964iy5H6IXv0wbsCYfzPBNAOS3QF19O6wd9GNGNGTznnyNQ2dPI5oY5jhzR5Ho9Nr10_HHi35iKOyLTGpOyL5nhzgT5Xg0-xVp4aAZ3_qSXZ_-elu8yXfXn--2lxsc82piDnXQDvRcM1AsRJZxxh2TdsAL9sKNOWVLnUDreJ1264V56qokTWC1pw1VAh2kr1b5roQjQzaRNR77axNy8iiqCgwYH9VB-8eJwxRPrjJ22RM0roseQ01LZPqfFH1akBpbOfSL-l02nlnZ7Ez6f5iXVBaFgJm4P0zIGkiPsVeTSHIq93tcy1dtNq7EDx28uDNqPxRUpBzAOQSAJkCIOcAyJkpFiYkre3R_2P7v9BvG8az-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966490916</pqid></control><display><type>article</type><title>Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater</title><source>SpringerNature Journals</source><creator>Mai, W. ; Zhang, J.-F. ; Zhao, X.-M. ; Li, Z. ; Xu, Z.-W.</creator><creatorcontrib>Mai, W. ; Zhang, J.-F. ; Zhao, X.-M. ; Li, Z. ; Xu, Z.-W.</creatorcontrib><description>Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.</description><identifier>ISSN: 0021-9037</identifier><identifier>EISSN: 1573-8647</identifier><identifier>DOI: 10.1007/s10812-017-0548-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ACCURACY ; Analysis ; Analytical Chemistry ; Atomic/Molecular Structure and Spectra ; CHEMICAL OXYGEN DEMAND ; Dye industry ; Dyes ; Environmental monitoring ; ERRORS ; FORECASTING ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; International economic relations ; LEAST SQUARE FIT ; Least squares method ; Mathematical models ; Measurement ; MONITORING ; Optical instruments ; Performance prediction ; Physics ; Physics and Astronomy ; POLYMERASE CHAIN REACTION ; Regression analysis ; SPECTROPHOTOMETERS ; SPECTROSCOPY ; Spectrum analysis ; ULTRAVIOLET RADIATION ; Ultraviolet-visible spectroscopy ; WASTE WATER ; Wastewater ; WATER QUALITY</subject><ispartof>Journal of applied spectroscopy, 2017-11, Vol.84 (5), p.804-810</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4c01f7b4c30a36e3f33efbdb046d80c148c6cb0da49dd5a44a29e3b71943b1773</citedby><cites>FETCH-LOGICAL-c417t-4c01f7b4c30a36e3f33efbdb046d80c148c6cb0da49dd5a44a29e3b71943b1773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10812-017-0548-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10812-017-0548-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22810303$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mai, W.</creatorcontrib><creatorcontrib>Zhang, J.-F.</creatorcontrib><creatorcontrib>Zhao, X.-M.</creatorcontrib><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Xu, Z.-W.</creatorcontrib><title>Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater</title><title>Journal of applied spectroscopy</title><addtitle>J Appl Spectrosc</addtitle><description>Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.</description><subject>ACCURACY</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>CHEMICAL OXYGEN DEMAND</subject><subject>Dye industry</subject><subject>Dyes</subject><subject>Environmental monitoring</subject><subject>ERRORS</subject><subject>FORECASTING</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>International economic relations</subject><subject>LEAST SQUARE FIT</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>MONITORING</subject><subject>Optical instruments</subject><subject>Performance prediction</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>POLYMERASE CHAIN REACTION</subject><subject>Regression analysis</subject><subject>SPECTROPHOTOMETERS</subject><subject>SPECTROSCOPY</subject><subject>Spectrum analysis</subject><subject>ULTRAVIOLET RADIATION</subject><subject>Ultraviolet-visible spectroscopy</subject><subject>WASTE WATER</subject><subject>Wastewater</subject><subject>WATER QUALITY</subject><issn>0021-9037</issn><issn>1573-8647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1ksFu1DAQhiMEEkvbB-BmiROHlHHsjZNjtVCotKhVt4Wj5TiTrKvE3toOdB-E98VRkKAH5MOMrP8b_2P9WfaWwjkFEB8ChYoWOVCRw5pXefkiW9G1YHlVcvEyWwEUNK-BidfZmxAeAKCuClhlv26Uj0YNZIsqRLJ7nJTHQG6xTyUYZ8lGDabxKs6964iy5H6IXv0wbsCYfzPBNAOS3QF19O6wd9GNGNGTznnyNQ2dPI5oY5jhzR5Ho9Nr10_HHi35iKOyLTGpOyL5nhzgT5Xg0-xVp4aAZ3_qSXZ_-elu8yXfXn--2lxsc82piDnXQDvRcM1AsRJZxxh2TdsAL9sKNOWVLnUDreJ1264V56qokTWC1pw1VAh2kr1b5roQjQzaRNR77axNy8iiqCgwYH9VB-8eJwxRPrjJ22RM0roseQ01LZPqfFH1akBpbOfSL-l02nlnZ7Ez6f5iXVBaFgJm4P0zIGkiPsVeTSHIq93tcy1dtNq7EDx28uDNqPxRUpBzAOQSAJkCIOcAyJkpFiYkre3R_2P7v9BvG8az-g</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Mai, W.</creator><creator>Zhang, J.-F.</creator><creator>Zhao, X.-M.</creator><creator>Li, Z.</creator><creator>Xu, Z.-W.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20171101</creationdate><title>Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater</title><author>Mai, W. ; Zhang, J.-F. ; Zhao, X.-M. ; Li, Z. ; Xu, Z.-W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4c01f7b4c30a36e3f33efbdb046d80c148c6cb0da49dd5a44a29e3b71943b1773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ACCURACY</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>CHEMICAL OXYGEN DEMAND</topic><topic>Dye industry</topic><topic>Dyes</topic><topic>Environmental monitoring</topic><topic>ERRORS</topic><topic>FORECASTING</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>International economic relations</topic><topic>LEAST SQUARE FIT</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>MONITORING</topic><topic>Optical instruments</topic><topic>Performance prediction</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>POLYMERASE CHAIN REACTION</topic><topic>Regression analysis</topic><topic>SPECTROPHOTOMETERS</topic><topic>SPECTROSCOPY</topic><topic>Spectrum analysis</topic><topic>ULTRAVIOLET RADIATION</topic><topic>Ultraviolet-visible spectroscopy</topic><topic>WASTE WATER</topic><topic>Wastewater</topic><topic>WATER QUALITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, W.</creatorcontrib><creatorcontrib>Zhang, J.-F.</creatorcontrib><creatorcontrib>Zhao, X.-M.</creatorcontrib><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Xu, Z.-W.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, W.</au><au>Zhang, J.-F.</au><au>Zhao, X.-M.</au><au>Li, Z.</au><au>Xu, Z.-W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater</atitle><jtitle>Journal of applied spectroscopy</jtitle><stitle>J Appl Spectrosc</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>84</volume><issue>5</issue><spage>804</spage><epage>810</epage><pages>804-810</pages><issn>0021-9037</issn><eissn>1573-8647</eissn><abstract>Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10812-017-0548-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9037 |
ispartof | Journal of applied spectroscopy, 2017-11, Vol.84 (5), p.804-810 |
issn | 0021-9037 1573-8647 |
language | eng |
recordid | cdi_osti_scitechconnect_22810303 |
source | SpringerNature Journals |
subjects | ACCURACY Analysis Analytical Chemistry Atomic/Molecular Structure and Spectra CHEMICAL OXYGEN DEMAND Dye industry Dyes Environmental monitoring ERRORS FORECASTING INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY International economic relations LEAST SQUARE FIT Least squares method Mathematical models Measurement MONITORING Optical instruments Performance prediction Physics Physics and Astronomy POLYMERASE CHAIN REACTION Regression analysis SPECTROPHOTOMETERS SPECTROSCOPY Spectrum analysis ULTRAVIOLET RADIATION Ultraviolet-visible spectroscopy WASTE WATER Wastewater WATER QUALITY |
title | Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Least%20Squares%20Regression%20Calibration%20of%20an%20Ultraviolet-Visible%20Spectrophotometer%20for%20Measurements%20of%20Chemical%20Oxygen%20Demand%20in%20Dye%20Wastewater&rft.jtitle=Journal%20of%20applied%20spectroscopy&rft.au=Mai,%20W.&rft.date=2017-11-01&rft.volume=84&rft.issue=5&rft.spage=804&rft.epage=810&rft.pages=804-810&rft.issn=0021-9037&rft.eissn=1573-8647&rft_id=info:doi/10.1007/s10812-017-0548-6&rft_dat=%3Cgale_osti_%3EA521162706%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966490916&rft_id=info:pmid/&rft_galeid=A521162706&rfr_iscdi=true |