Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater

Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal compone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied spectroscopy 2017-11, Vol.84 (5), p.804-810
Hauptverfasser: Mai, W., Zhang, J.-F., Zhao, X.-M., Li, Z., Xu, Z.-W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 810
container_issue 5
container_start_page 804
container_title Journal of applied spectroscopy
container_volume 84
creator Mai, W.
Zhang, J.-F.
Zhao, X.-M.
Li, Z.
Xu, Z.-W.
description Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.
doi_str_mv 10.1007/s10812-017-0548-6
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22810303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A521162706</galeid><sourcerecordid>A521162706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4c01f7b4c30a36e3f33efbdb046d80c148c6cb0da49dd5a44a29e3b71943b1773</originalsourceid><addsrcrecordid>eNp1ksFu1DAQhiMEEkvbB-BmiROHlHHsjZNjtVCotKhVt4Wj5TiTrKvE3toOdB-E98VRkKAH5MOMrP8b_2P9WfaWwjkFEB8ChYoWOVCRw5pXefkiW9G1YHlVcvEyWwEUNK-BidfZmxAeAKCuClhlv26Uj0YNZIsqRLJ7nJTHQG6xTyUYZ8lGDabxKs6964iy5H6IXv0wbsCYfzPBNAOS3QF19O6wd9GNGNGTznnyNQ2dPI5oY5jhzR5Ho9Nr10_HHi35iKOyLTGpOyL5nhzgT5Xg0-xVp4aAZ3_qSXZ_-elu8yXfXn--2lxsc82piDnXQDvRcM1AsRJZxxh2TdsAL9sKNOWVLnUDreJ1264V56qokTWC1pw1VAh2kr1b5roQjQzaRNR77axNy8iiqCgwYH9VB-8eJwxRPrjJ22RM0roseQ01LZPqfFH1akBpbOfSL-l02nlnZ7Ez6f5iXVBaFgJm4P0zIGkiPsVeTSHIq93tcy1dtNq7EDx28uDNqPxRUpBzAOQSAJkCIOcAyJkpFiYkre3R_2P7v9BvG8az-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966490916</pqid></control><display><type>article</type><title>Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater</title><source>SpringerNature Journals</source><creator>Mai, W. ; Zhang, J.-F. ; Zhao, X.-M. ; Li, Z. ; Xu, Z.-W.</creator><creatorcontrib>Mai, W. ; Zhang, J.-F. ; Zhao, X.-M. ; Li, Z. ; Xu, Z.-W.</creatorcontrib><description>Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.</description><identifier>ISSN: 0021-9037</identifier><identifier>EISSN: 1573-8647</identifier><identifier>DOI: 10.1007/s10812-017-0548-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ACCURACY ; Analysis ; Analytical Chemistry ; Atomic/Molecular Structure and Spectra ; CHEMICAL OXYGEN DEMAND ; Dye industry ; Dyes ; Environmental monitoring ; ERRORS ; FORECASTING ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; International economic relations ; LEAST SQUARE FIT ; Least squares method ; Mathematical models ; Measurement ; MONITORING ; Optical instruments ; Performance prediction ; Physics ; Physics and Astronomy ; POLYMERASE CHAIN REACTION ; Regression analysis ; SPECTROPHOTOMETERS ; SPECTROSCOPY ; Spectrum analysis ; ULTRAVIOLET RADIATION ; Ultraviolet-visible spectroscopy ; WASTE WATER ; Wastewater ; WATER QUALITY</subject><ispartof>Journal of applied spectroscopy, 2017-11, Vol.84 (5), p.804-810</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4c01f7b4c30a36e3f33efbdb046d80c148c6cb0da49dd5a44a29e3b71943b1773</citedby><cites>FETCH-LOGICAL-c417t-4c01f7b4c30a36e3f33efbdb046d80c148c6cb0da49dd5a44a29e3b71943b1773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10812-017-0548-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10812-017-0548-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22810303$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mai, W.</creatorcontrib><creatorcontrib>Zhang, J.-F.</creatorcontrib><creatorcontrib>Zhao, X.-M.</creatorcontrib><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Xu, Z.-W.</creatorcontrib><title>Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater</title><title>Journal of applied spectroscopy</title><addtitle>J Appl Spectrosc</addtitle><description>Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.</description><subject>ACCURACY</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>CHEMICAL OXYGEN DEMAND</subject><subject>Dye industry</subject><subject>Dyes</subject><subject>Environmental monitoring</subject><subject>ERRORS</subject><subject>FORECASTING</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>International economic relations</subject><subject>LEAST SQUARE FIT</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>MONITORING</subject><subject>Optical instruments</subject><subject>Performance prediction</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>POLYMERASE CHAIN REACTION</subject><subject>Regression analysis</subject><subject>SPECTROPHOTOMETERS</subject><subject>SPECTROSCOPY</subject><subject>Spectrum analysis</subject><subject>ULTRAVIOLET RADIATION</subject><subject>Ultraviolet-visible spectroscopy</subject><subject>WASTE WATER</subject><subject>Wastewater</subject><subject>WATER QUALITY</subject><issn>0021-9037</issn><issn>1573-8647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1ksFu1DAQhiMEEkvbB-BmiROHlHHsjZNjtVCotKhVt4Wj5TiTrKvE3toOdB-E98VRkKAH5MOMrP8b_2P9WfaWwjkFEB8ChYoWOVCRw5pXefkiW9G1YHlVcvEyWwEUNK-BidfZmxAeAKCuClhlv26Uj0YNZIsqRLJ7nJTHQG6xTyUYZ8lGDabxKs6964iy5H6IXv0wbsCYfzPBNAOS3QF19O6wd9GNGNGTznnyNQ2dPI5oY5jhzR5Ho9Nr10_HHi35iKOyLTGpOyL5nhzgT5Xg0-xVp4aAZ3_qSXZ_-elu8yXfXn--2lxsc82piDnXQDvRcM1AsRJZxxh2TdsAL9sKNOWVLnUDreJ1264V56qokTWC1pw1VAh2kr1b5roQjQzaRNR77axNy8iiqCgwYH9VB-8eJwxRPrjJ22RM0roseQ01LZPqfFH1akBpbOfSL-l02nlnZ7Ez6f5iXVBaFgJm4P0zIGkiPsVeTSHIq93tcy1dtNq7EDx28uDNqPxRUpBzAOQSAJkCIOcAyJkpFiYkre3R_2P7v9BvG8az-g</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Mai, W.</creator><creator>Zhang, J.-F.</creator><creator>Zhao, X.-M.</creator><creator>Li, Z.</creator><creator>Xu, Z.-W.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20171101</creationdate><title>Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater</title><author>Mai, W. ; Zhang, J.-F. ; Zhao, X.-M. ; Li, Z. ; Xu, Z.-W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4c01f7b4c30a36e3f33efbdb046d80c148c6cb0da49dd5a44a29e3b71943b1773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ACCURACY</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>CHEMICAL OXYGEN DEMAND</topic><topic>Dye industry</topic><topic>Dyes</topic><topic>Environmental monitoring</topic><topic>ERRORS</topic><topic>FORECASTING</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>International economic relations</topic><topic>LEAST SQUARE FIT</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>MONITORING</topic><topic>Optical instruments</topic><topic>Performance prediction</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>POLYMERASE CHAIN REACTION</topic><topic>Regression analysis</topic><topic>SPECTROPHOTOMETERS</topic><topic>SPECTROSCOPY</topic><topic>Spectrum analysis</topic><topic>ULTRAVIOLET RADIATION</topic><topic>Ultraviolet-visible spectroscopy</topic><topic>WASTE WATER</topic><topic>Wastewater</topic><topic>WATER QUALITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, W.</creatorcontrib><creatorcontrib>Zhang, J.-F.</creatorcontrib><creatorcontrib>Zhao, X.-M.</creatorcontrib><creatorcontrib>Li, Z.</creatorcontrib><creatorcontrib>Xu, Z.-W.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, W.</au><au>Zhang, J.-F.</au><au>Zhao, X.-M.</au><au>Li, Z.</au><au>Xu, Z.-W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater</atitle><jtitle>Journal of applied spectroscopy</jtitle><stitle>J Appl Spectrosc</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>84</volume><issue>5</issue><spage>804</spage><epage>810</epage><pages>804-810</pages><issn>0021-9037</issn><eissn>1573-8647</eissn><abstract>Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10812-017-0548-6</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9037
ispartof Journal of applied spectroscopy, 2017-11, Vol.84 (5), p.804-810
issn 0021-9037
1573-8647
language eng
recordid cdi_osti_scitechconnect_22810303
source SpringerNature Journals
subjects ACCURACY
Analysis
Analytical Chemistry
Atomic/Molecular Structure and Spectra
CHEMICAL OXYGEN DEMAND
Dye industry
Dyes
Environmental monitoring
ERRORS
FORECASTING
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
International economic relations
LEAST SQUARE FIT
Least squares method
Mathematical models
Measurement
MONITORING
Optical instruments
Performance prediction
Physics
Physics and Astronomy
POLYMERASE CHAIN REACTION
Regression analysis
SPECTROPHOTOMETERS
SPECTROSCOPY
Spectrum analysis
ULTRAVIOLET RADIATION
Ultraviolet-visible spectroscopy
WASTE WATER
Wastewater
WATER QUALITY
title Partial Least Squares Regression Calibration of an Ultraviolet-Visible Spectrophotometer for Measurements of Chemical Oxygen Demand in Dye Wastewater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20Least%20Squares%20Regression%20Calibration%20of%20an%20Ultraviolet-Visible%20Spectrophotometer%20for%20Measurements%20of%20Chemical%20Oxygen%20Demand%20in%20Dye%20Wastewater&rft.jtitle=Journal%20of%20applied%20spectroscopy&rft.au=Mai,%20W.&rft.date=2017-11-01&rft.volume=84&rft.issue=5&rft.spage=804&rft.epage=810&rft.pages=804-810&rft.issn=0021-9037&rft.eissn=1573-8647&rft_id=info:doi/10.1007/s10812-017-0548-6&rft_dat=%3Cgale_osti_%3EA521162706%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966490916&rft_id=info:pmid/&rft_galeid=A521162706&rfr_iscdi=true