Swelling of Uranium Dioxide–Silumin Dispersion Fuel Composition in Experimental Fuel Elements of the SM Reactor

A variant of experimental dispersion fuel elements with a displacer and uranium dioxide-silumin fuel composition, which were proposed for modernizing the core of the SM reactor, was investigated. The fuel elements were irradiated in a wide spectrum of neutron- and thermophysical parameters of the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atomic energy (New York, N.Y.) N.Y.), 2018-05, Vol.124 (1), p.28-35
Hauptverfasser: Gil’mutdinov, I. F., Shishin, V. Yu, Kryukov, F. N., Kuz’min, S. V., Silant’ev, P. P., Minduksheva, I. A., Starkov, V. A., Pimenov, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 28
container_title Atomic energy (New York, N.Y.)
container_volume 124
creator Gil’mutdinov, I. F.
Shishin, V. Yu
Kryukov, F. N.
Kuz’min, S. V.
Silant’ev, P. P.
Minduksheva, I. A.
Starkov, V. A.
Pimenov, V. V.
description A variant of experimental dispersion fuel elements with a displacer and uranium dioxide-silumin fuel composition, which were proposed for modernizing the core of the SM reactor, was investigated. The fuel elements were irradiated in a wide spectrum of neutron- and thermophysical parameters of the reactor’s reflector channel. The fuel elements showed satisfactory radiation resistance at thermal flux density 5.8–8 MW/m 2 and burnup to 45%. The swelling of the fuel composition was analyzed. It is shown that of three possible components of the swelling the one due to gaseous fission products makes the main contribution, approximately 3/4 of the total amount. The interaction of the fuel components results in compaction of the kernel and promotes some compensation of the swelling, increasing as the interaction increases. These investigations show that the depth of burnup at the achieved thermal flux density for fuel elements with a displacer is not the limit.
doi_str_mv 10.1007/s10512-018-0370-0
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22810032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A544660907</galeid><sourcerecordid>A544660907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-80037646d8a842d599d689dfe1da062f1f5efa3178158a8e48b9910475a18db23</originalsourceid><addsrcrecordid>eNp1kc9q3DAQxkVpoOmmD9CboacenIxkyZaPYbtJAymFbHMWij3aKNjSRpLJ9tZ3yBv2SSLjQptDEejPzO8bRvMR8pHCKQVoziIFQVkJVJZQNVDCG3JMRVOVkoF4m-9QVyVnQr4j72N8AIC2buUxedw-4TBYtyu8KW6DdnYaiy_WH2yPv389b-0wjdblSNxjiNa74mLCoVj7ce-jTXMgpzeHnLUjuqSHBdgMOD_jXDbdY7H9Vtyg7pIPJ-TI6CHihz_nitxebH6sv5bX3y-v1ufXZcdpk0oJ-R81r3upJWe9aNu-lm1vkPYaamaoEWh0RRtJRUaQy7u2pcAboans71i1Ip-Wuj4mq2JnE3b3nXcOu6QYk3ls1T_UPvjHCWNSD34KLjemGHAOlAnaZOp0oXZ6QGWd8SnoLq8eR5trorE5fi44r2toYRZ8fiXITMJD2ukpRnW1vXnN0oXtgo8xoFH7PEsdfioKajZXLeaqbK6azc3birBFEzPrdhj-tv1_0QvTY6Wr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2044012517</pqid></control><display><type>article</type><title>Swelling of Uranium Dioxide–Silumin Dispersion Fuel Composition in Experimental Fuel Elements of the SM Reactor</title><source>SpringerNature Journals</source><creator>Gil’mutdinov, I. F. ; Shishin, V. Yu ; Kryukov, F. N. ; Kuz’min, S. V. ; Silant’ev, P. P. ; Minduksheva, I. A. ; Starkov, V. A. ; Pimenov, V. V.</creator><creatorcontrib>Gil’mutdinov, I. F. ; Shishin, V. Yu ; Kryukov, F. N. ; Kuz’min, S. V. ; Silant’ev, P. P. ; Minduksheva, I. A. ; Starkov, V. A. ; Pimenov, V. V.</creatorcontrib><description>A variant of experimental dispersion fuel elements with a displacer and uranium dioxide-silumin fuel composition, which were proposed for modernizing the core of the SM reactor, was investigated. The fuel elements were irradiated in a wide spectrum of neutron- and thermophysical parameters of the reactor’s reflector channel. The fuel elements showed satisfactory radiation resistance at thermal flux density 5.8–8 MW/m 2 and burnup to 45%. The swelling of the fuel composition was analyzed. It is shown that of three possible components of the swelling the one due to gaseous fission products makes the main contribution, approximately 3/4 of the total amount. The interaction of the fuel components results in compaction of the kernel and promotes some compensation of the swelling, increasing as the interaction increases. These investigations show that the depth of burnup at the achieved thermal flux density for fuel elements with a displacer is not the limit.</description><identifier>ISSN: 1063-4258</identifier><identifier>EISSN: 1573-8205</identifier><identifier>DOI: 10.1007/s10512-018-0370-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>BURNUP ; Composition ; Dispersion ; DISPERSION NUCLEAR FUELS ; Energy industry ; FISSION PRODUCTS ; FLUX DENSITY ; FUEL ELEMENTS ; GENERAL STUDIES OF NUCLEAR REACTORS ; Hadrons ; Heat transfer ; Heat transmission ; Heavy Ions ; IRRADIATION ; Modernization ; Neutron flux ; NEUTRONS ; Nuclear Chemistry ; Nuclear Energy ; Nuclear fuel elements ; Nuclear fuels ; Nuclear Physics ; Nuclear power plants ; Physics ; Physics and Astronomy ; Radiation (Physics) ; Radiation tolerance ; Reactors ; Silicon alloys ; SWELLING ; Thermal resistance ; Uranium ; Uranium compounds ; URANIUM DIOXIDE ; Uranium ores</subject><ispartof>Atomic energy (New York, N.Y.), 2018-05, Vol.124 (1), p.28-35</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Atomic Energy is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-80037646d8a842d599d689dfe1da062f1f5efa3178158a8e48b9910475a18db23</citedby><cites>FETCH-LOGICAL-c417t-80037646d8a842d599d689dfe1da062f1f5efa3178158a8e48b9910475a18db23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10512-018-0370-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10512-018-0370-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22810032$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gil’mutdinov, I. F.</creatorcontrib><creatorcontrib>Shishin, V. Yu</creatorcontrib><creatorcontrib>Kryukov, F. N.</creatorcontrib><creatorcontrib>Kuz’min, S. V.</creatorcontrib><creatorcontrib>Silant’ev, P. P.</creatorcontrib><creatorcontrib>Minduksheva, I. A.</creatorcontrib><creatorcontrib>Starkov, V. A.</creatorcontrib><creatorcontrib>Pimenov, V. V.</creatorcontrib><title>Swelling of Uranium Dioxide–Silumin Dispersion Fuel Composition in Experimental Fuel Elements of the SM Reactor</title><title>Atomic energy (New York, N.Y.)</title><addtitle>At Energy</addtitle><description>A variant of experimental dispersion fuel elements with a displacer and uranium dioxide-silumin fuel composition, which were proposed for modernizing the core of the SM reactor, was investigated. The fuel elements were irradiated in a wide spectrum of neutron- and thermophysical parameters of the reactor’s reflector channel. The fuel elements showed satisfactory radiation resistance at thermal flux density 5.8–8 MW/m 2 and burnup to 45%. The swelling of the fuel composition was analyzed. It is shown that of three possible components of the swelling the one due to gaseous fission products makes the main contribution, approximately 3/4 of the total amount. The interaction of the fuel components results in compaction of the kernel and promotes some compensation of the swelling, increasing as the interaction increases. These investigations show that the depth of burnup at the achieved thermal flux density for fuel elements with a displacer is not the limit.</description><subject>BURNUP</subject><subject>Composition</subject><subject>Dispersion</subject><subject>DISPERSION NUCLEAR FUELS</subject><subject>Energy industry</subject><subject>FISSION PRODUCTS</subject><subject>FLUX DENSITY</subject><subject>FUEL ELEMENTS</subject><subject>GENERAL STUDIES OF NUCLEAR REACTORS</subject><subject>Hadrons</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Heavy Ions</subject><subject>IRRADIATION</subject><subject>Modernization</subject><subject>Neutron flux</subject><subject>NEUTRONS</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Energy</subject><subject>Nuclear fuel elements</subject><subject>Nuclear fuels</subject><subject>Nuclear Physics</subject><subject>Nuclear power plants</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation (Physics)</subject><subject>Radiation tolerance</subject><subject>Reactors</subject><subject>Silicon alloys</subject><subject>SWELLING</subject><subject>Thermal resistance</subject><subject>Uranium</subject><subject>Uranium compounds</subject><subject>URANIUM DIOXIDE</subject><subject>Uranium ores</subject><issn>1063-4258</issn><issn>1573-8205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9q3DAQxkVpoOmmD9CboacenIxkyZaPYbtJAymFbHMWij3aKNjSRpLJ9tZ3yBv2SSLjQptDEejPzO8bRvMR8pHCKQVoziIFQVkJVJZQNVDCG3JMRVOVkoF4m-9QVyVnQr4j72N8AIC2buUxedw-4TBYtyu8KW6DdnYaiy_WH2yPv389b-0wjdblSNxjiNa74mLCoVj7ce-jTXMgpzeHnLUjuqSHBdgMOD_jXDbdY7H9Vtyg7pIPJ-TI6CHihz_nitxebH6sv5bX3y-v1ufXZcdpk0oJ-R81r3upJWe9aNu-lm1vkPYaamaoEWh0RRtJRUaQy7u2pcAboans71i1Ip-Wuj4mq2JnE3b3nXcOu6QYk3ls1T_UPvjHCWNSD34KLjemGHAOlAnaZOp0oXZ6QGWd8SnoLq8eR5trorE5fi44r2toYRZ8fiXITMJD2ukpRnW1vXnN0oXtgo8xoFH7PEsdfioKajZXLeaqbK6azc3birBFEzPrdhj-tv1_0QvTY6Wr</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Gil’mutdinov, I. F.</creator><creator>Shishin, V. Yu</creator><creator>Kryukov, F. N.</creator><creator>Kuz’min, S. V.</creator><creator>Silant’ev, P. P.</creator><creator>Minduksheva, I. A.</creator><creator>Starkov, V. A.</creator><creator>Pimenov, V. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20180501</creationdate><title>Swelling of Uranium Dioxide–Silumin Dispersion Fuel Composition in Experimental Fuel Elements of the SM Reactor</title><author>Gil’mutdinov, I. F. ; Shishin, V. Yu ; Kryukov, F. N. ; Kuz’min, S. V. ; Silant’ev, P. P. ; Minduksheva, I. A. ; Starkov, V. A. ; Pimenov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-80037646d8a842d599d689dfe1da062f1f5efa3178158a8e48b9910475a18db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>BURNUP</topic><topic>Composition</topic><topic>Dispersion</topic><topic>DISPERSION NUCLEAR FUELS</topic><topic>Energy industry</topic><topic>FISSION PRODUCTS</topic><topic>FLUX DENSITY</topic><topic>FUEL ELEMENTS</topic><topic>GENERAL STUDIES OF NUCLEAR REACTORS</topic><topic>Hadrons</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Heavy Ions</topic><topic>IRRADIATION</topic><topic>Modernization</topic><topic>Neutron flux</topic><topic>NEUTRONS</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Energy</topic><topic>Nuclear fuel elements</topic><topic>Nuclear fuels</topic><topic>Nuclear Physics</topic><topic>Nuclear power plants</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation (Physics)</topic><topic>Radiation tolerance</topic><topic>Reactors</topic><topic>Silicon alloys</topic><topic>SWELLING</topic><topic>Thermal resistance</topic><topic>Uranium</topic><topic>Uranium compounds</topic><topic>URANIUM DIOXIDE</topic><topic>Uranium ores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gil’mutdinov, I. F.</creatorcontrib><creatorcontrib>Shishin, V. Yu</creatorcontrib><creatorcontrib>Kryukov, F. N.</creatorcontrib><creatorcontrib>Kuz’min, S. V.</creatorcontrib><creatorcontrib>Silant’ev, P. P.</creatorcontrib><creatorcontrib>Minduksheva, I. A.</creatorcontrib><creatorcontrib>Starkov, V. A.</creatorcontrib><creatorcontrib>Pimenov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Atomic energy (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gil’mutdinov, I. F.</au><au>Shishin, V. Yu</au><au>Kryukov, F. N.</au><au>Kuz’min, S. V.</au><au>Silant’ev, P. P.</au><au>Minduksheva, I. A.</au><au>Starkov, V. A.</au><au>Pimenov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swelling of Uranium Dioxide–Silumin Dispersion Fuel Composition in Experimental Fuel Elements of the SM Reactor</atitle><jtitle>Atomic energy (New York, N.Y.)</jtitle><stitle>At Energy</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>124</volume><issue>1</issue><spage>28</spage><epage>35</epage><pages>28-35</pages><issn>1063-4258</issn><eissn>1573-8205</eissn><abstract>A variant of experimental dispersion fuel elements with a displacer and uranium dioxide-silumin fuel composition, which were proposed for modernizing the core of the SM reactor, was investigated. The fuel elements were irradiated in a wide spectrum of neutron- and thermophysical parameters of the reactor’s reflector channel. The fuel elements showed satisfactory radiation resistance at thermal flux density 5.8–8 MW/m 2 and burnup to 45%. The swelling of the fuel composition was analyzed. It is shown that of three possible components of the swelling the one due to gaseous fission products makes the main contribution, approximately 3/4 of the total amount. The interaction of the fuel components results in compaction of the kernel and promotes some compensation of the swelling, increasing as the interaction increases. These investigations show that the depth of burnup at the achieved thermal flux density for fuel elements with a displacer is not the limit.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10512-018-0370-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-4258
ispartof Atomic energy (New York, N.Y.), 2018-05, Vol.124 (1), p.28-35
issn 1063-4258
1573-8205
language eng
recordid cdi_osti_scitechconnect_22810032
source SpringerNature Journals
subjects BURNUP
Composition
Dispersion
DISPERSION NUCLEAR FUELS
Energy industry
FISSION PRODUCTS
FLUX DENSITY
FUEL ELEMENTS
GENERAL STUDIES OF NUCLEAR REACTORS
Hadrons
Heat transfer
Heat transmission
Heavy Ions
IRRADIATION
Modernization
Neutron flux
NEUTRONS
Nuclear Chemistry
Nuclear Energy
Nuclear fuel elements
Nuclear fuels
Nuclear Physics
Nuclear power plants
Physics
Physics and Astronomy
Radiation (Physics)
Radiation tolerance
Reactors
Silicon alloys
SWELLING
Thermal resistance
Uranium
Uranium compounds
URANIUM DIOXIDE
Uranium ores
title Swelling of Uranium Dioxide–Silumin Dispersion Fuel Composition in Experimental Fuel Elements of the SM Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swelling%20of%20Uranium%20Dioxide%E2%80%93Silumin%20Dispersion%20Fuel%20Composition%20in%20Experimental%20Fuel%20Elements%20of%20the%20SM%20Reactor&rft.jtitle=Atomic%20energy%20(New%20York,%20N.Y.)&rft.au=Gil%E2%80%99mutdinov,%20I.%20F.&rft.date=2018-05-01&rft.volume=124&rft.issue=1&rft.spage=28&rft.epage=35&rft.pages=28-35&rft.issn=1063-4258&rft.eissn=1573-8205&rft_id=info:doi/10.1007/s10512-018-0370-0&rft_dat=%3Cgale_osti_%3EA544660907%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2044012517&rft_id=info:pmid/&rft_galeid=A544660907&rfr_iscdi=true