Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires
We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their sw...
Gespeichert in:
Veröffentlicht in: | Journal of low temperature physics 2018-11, Vol.193 (3-4), p.380-386 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 3-4 |
container_start_page | 380 |
container_title | Journal of low temperature physics |
container_volume | 193 |
creator | Allmaras, J. P. Kozorezov, A. G. Beyer, A. D. Marsili, F. Briggs, R. M. Shaw, M. D. |
description | We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems. |
doi_str_mv | 10.1007/s10909-018-2022-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22809846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118351951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6d33ef3672e499d4544d3e260ac15f3f9e63b0a7f822c1c41770c097cdbb83023</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqXwAdwicTas7SSOj6iigChwoD1bqbNpXTVJsR1Q_x5XqdQTp9Wu3oxmh5BbBvcMQD54BgoUBVZQDpxTOCMjlklBpcjkORnB4ci5YpfkyvsNAKgiFyPyNl_blk7ttknma3RNuU0mXVv1JtgfG_bJO5a-d9hgG3yy8LZdJV_9Dp05QnH_KNvu1zr01-SiLrceb45zTBbTp_nkhc4-n18njzNqRCEDzSshsBa55JgqVaVZmlYCeQ6lYVktaoW5WEIp64Jzw0zKpAQDSppquSwEcDEmd4Nv54PV3tiAZh0DtWiC5ryIr6X5idq57rtHH_Sm610bg2nOWCEypjIWKTZQxnXeO6z1ztmmdHvNQB-a1UOzOjarD81qiBo-aHxk2xW6k_P_oj9HGnqH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118351951</pqid></control><display><type>article</type><title>Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires</title><source>SpringerLink Journals - AutoHoldings</source><creator>Allmaras, J. P. ; Kozorezov, A. G. ; Beyer, A. D. ; Marsili, F. ; Briggs, R. M. ; Shaw, M. D.</creator><creatorcontrib>Allmaras, J. P. ; Kozorezov, A. G. ; Beyer, A. D. ; Marsili, F. ; Briggs, R. M. ; Shaw, M. D.</creatorcontrib><description>We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-2022-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>CALIBRATION ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; COOLING TIME ; HEAT ; HEAT TRANSFER ; HEATERS ; Low temperature physics ; Magnetic Materials ; Magnetism ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOWIRES ; PHOTONS ; Physics ; Physics and Astronomy ; SIMULATION ; Substrates ; Superconductivity ; SUPERCONDUCTORS ; Switching ; THERMAL CONDUCTIVITY ; THIN FILMS ; Transport properties</subject><ispartof>Journal of low temperature physics, 2018-11, Vol.193 (3-4), p.380-386</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6d33ef3672e499d4544d3e260ac15f3f9e63b0a7f822c1c41770c097cdbb83023</citedby><cites>FETCH-LOGICAL-c387t-6d33ef3672e499d4544d3e260ac15f3f9e63b0a7f822c1c41770c097cdbb83023</cites><orcidid>0000-0001-9621-289X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-2022-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-2022-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22809846$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Allmaras, J. P.</creatorcontrib><creatorcontrib>Kozorezov, A. G.</creatorcontrib><creatorcontrib>Beyer, A. D.</creatorcontrib><creatorcontrib>Marsili, F.</creatorcontrib><creatorcontrib>Briggs, R. M.</creatorcontrib><creatorcontrib>Shaw, M. D.</creatorcontrib><title>Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems.</description><subject>CALIBRATION</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>COOLING TIME</subject><subject>HEAT</subject><subject>HEAT TRANSFER</subject><subject>HEATERS</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOWIRES</subject><subject>PHOTONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>SIMULATION</subject><subject>Substrates</subject><subject>Superconductivity</subject><subject>SUPERCONDUCTORS</subject><subject>Switching</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THIN FILMS</subject><subject>Transport properties</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EEqXwAdwicTas7SSOj6iigChwoD1bqbNpXTVJsR1Q_x5XqdQTp9Wu3oxmh5BbBvcMQD54BgoUBVZQDpxTOCMjlklBpcjkORnB4ci5YpfkyvsNAKgiFyPyNl_blk7ttknma3RNuU0mXVv1JtgfG_bJO5a-d9hgG3yy8LZdJV_9Dp05QnH_KNvu1zr01-SiLrceb45zTBbTp_nkhc4-n18njzNqRCEDzSshsBa55JgqVaVZmlYCeQ6lYVktaoW5WEIp64Jzw0zKpAQDSppquSwEcDEmd4Nv54PV3tiAZh0DtWiC5ryIr6X5idq57rtHH_Sm610bg2nOWCEypjIWKTZQxnXeO6z1ztmmdHvNQB-a1UOzOjarD81qiBo-aHxk2xW6k_P_oj9HGnqH</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Allmaras, J. P.</creator><creator>Kozorezov, A. G.</creator><creator>Beyer, A. D.</creator><creator>Marsili, F.</creator><creator>Briggs, R. M.</creator><creator>Shaw, M. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9621-289X</orcidid></search><sort><creationdate>20181101</creationdate><title>Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires</title><author>Allmaras, J. P. ; Kozorezov, A. G. ; Beyer, A. D. ; Marsili, F. ; Briggs, R. M. ; Shaw, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6d33ef3672e499d4544d3e260ac15f3f9e63b0a7f822c1c41770c097cdbb83023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALIBRATION</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>COOLING TIME</topic><topic>HEAT</topic><topic>HEAT TRANSFER</topic><topic>HEATERS</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOWIRES</topic><topic>PHOTONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>SIMULATION</topic><topic>Substrates</topic><topic>Superconductivity</topic><topic>SUPERCONDUCTORS</topic><topic>Switching</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THIN FILMS</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allmaras, J. P.</creatorcontrib><creatorcontrib>Kozorezov, A. G.</creatorcontrib><creatorcontrib>Beyer, A. D.</creatorcontrib><creatorcontrib>Marsili, F.</creatorcontrib><creatorcontrib>Briggs, R. M.</creatorcontrib><creatorcontrib>Shaw, M. D.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allmaras, J. P.</au><au>Kozorezov, A. G.</au><au>Beyer, A. D.</au><au>Marsili, F.</au><au>Briggs, R. M.</au><au>Shaw, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>193</volume><issue>3-4</issue><spage>380</spage><epage>386</epage><pages>380-386</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-018-2022-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9621-289X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2291 |
ispartof | Journal of low temperature physics, 2018-11, Vol.193 (3-4), p.380-386 |
issn | 0022-2291 1573-7357 |
language | eng |
recordid | cdi_osti_scitechconnect_22809846 |
source | SpringerLink Journals - AutoHoldings |
subjects | CALIBRATION Characterization and Evaluation of Materials Condensed Matter Physics COOLING TIME HEAT HEAT TRANSFER HEATERS Low temperature physics Magnetic Materials Magnetism NANOSCIENCE AND NANOTECHNOLOGY NANOWIRES PHOTONS Physics Physics and Astronomy SIMULATION Substrates Superconductivity SUPERCONDUCTORS Switching THERMAL CONDUCTIVITY THIN FILMS Transport properties |
title | Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-Film%20Thermal%20Conductivity%20Measurements%20Using%20Superconducting%20Nanowires&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Allmaras,%20J.%20P.&rft.date=2018-11-01&rft.volume=193&rft.issue=3-4&rft.spage=380&rft.epage=386&rft.pages=380-386&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-2022-0&rft_dat=%3Cproquest_osti_%3E2118351951%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118351951&rft_id=info:pmid/&rfr_iscdi=true |