Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires

We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their sw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2018-11, Vol.193 (3-4), p.380-386
Hauptverfasser: Allmaras, J. P., Kozorezov, A. G., Beyer, A. D., Marsili, F., Briggs, R. M., Shaw, M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 3-4
container_start_page 380
container_title Journal of low temperature physics
container_volume 193
creator Allmaras, J. P.
Kozorezov, A. G.
Beyer, A. D.
Marsili, F.
Briggs, R. M.
Shaw, M. D.
description We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems.
doi_str_mv 10.1007/s10909-018-2022-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22809846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2118351951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-6d33ef3672e499d4544d3e260ac15f3f9e63b0a7f822c1c41770c097cdbb83023</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqXwAdwicTas7SSOj6iigChwoD1bqbNpXTVJsR1Q_x5XqdQTp9Wu3oxmh5BbBvcMQD54BgoUBVZQDpxTOCMjlklBpcjkORnB4ci5YpfkyvsNAKgiFyPyNl_blk7ttknma3RNuU0mXVv1JtgfG_bJO5a-d9hgG3yy8LZdJV_9Dp05QnH_KNvu1zr01-SiLrceb45zTBbTp_nkhc4-n18njzNqRCEDzSshsBa55JgqVaVZmlYCeQ6lYVktaoW5WEIp64Jzw0zKpAQDSppquSwEcDEmd4Nv54PV3tiAZh0DtWiC5ryIr6X5idq57rtHH_Sm610bg2nOWCEypjIWKTZQxnXeO6z1ztmmdHvNQB-a1UOzOjarD81qiBo-aHxk2xW6k_P_oj9HGnqH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118351951</pqid></control><display><type>article</type><title>Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires</title><source>SpringerLink Journals - AutoHoldings</source><creator>Allmaras, J. P. ; Kozorezov, A. G. ; Beyer, A. D. ; Marsili, F. ; Briggs, R. M. ; Shaw, M. D.</creator><creatorcontrib>Allmaras, J. P. ; Kozorezov, A. G. ; Beyer, A. D. ; Marsili, F. ; Briggs, R. M. ; Shaw, M. D.</creatorcontrib><description>We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems.</description><identifier>ISSN: 0022-2291</identifier><identifier>EISSN: 1573-7357</identifier><identifier>DOI: 10.1007/s10909-018-2022-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>CALIBRATION ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; COOLING TIME ; HEAT ; HEAT TRANSFER ; HEATERS ; Low temperature physics ; Magnetic Materials ; Magnetism ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOWIRES ; PHOTONS ; Physics ; Physics and Astronomy ; SIMULATION ; Substrates ; Superconductivity ; SUPERCONDUCTORS ; Switching ; THERMAL CONDUCTIVITY ; THIN FILMS ; Transport properties</subject><ispartof>Journal of low temperature physics, 2018-11, Vol.193 (3-4), p.380-386</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-6d33ef3672e499d4544d3e260ac15f3f9e63b0a7f822c1c41770c097cdbb83023</citedby><cites>FETCH-LOGICAL-c387t-6d33ef3672e499d4544d3e260ac15f3f9e63b0a7f822c1c41770c097cdbb83023</cites><orcidid>0000-0001-9621-289X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10909-018-2022-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10909-018-2022-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22809846$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Allmaras, J. P.</creatorcontrib><creatorcontrib>Kozorezov, A. G.</creatorcontrib><creatorcontrib>Beyer, A. D.</creatorcontrib><creatorcontrib>Marsili, F.</creatorcontrib><creatorcontrib>Briggs, R. M.</creatorcontrib><creatorcontrib>Shaw, M. D.</creatorcontrib><title>Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires</title><title>Journal of low temperature physics</title><addtitle>J Low Temp Phys</addtitle><description>We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems.</description><subject>CALIBRATION</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>COOLING TIME</subject><subject>HEAT</subject><subject>HEAT TRANSFER</subject><subject>HEATERS</subject><subject>Low temperature physics</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOWIRES</subject><subject>PHOTONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>SIMULATION</subject><subject>Substrates</subject><subject>Superconductivity</subject><subject>SUPERCONDUCTORS</subject><subject>Switching</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THIN FILMS</subject><subject>Transport properties</subject><issn>0022-2291</issn><issn>1573-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EEqXwAdwicTas7SSOj6iigChwoD1bqbNpXTVJsR1Q_x5XqdQTp9Wu3oxmh5BbBvcMQD54BgoUBVZQDpxTOCMjlklBpcjkORnB4ci5YpfkyvsNAKgiFyPyNl_blk7ttknma3RNuU0mXVv1JtgfG_bJO5a-d9hgG3yy8LZdJV_9Dp05QnH_KNvu1zr01-SiLrceb45zTBbTp_nkhc4-n18njzNqRCEDzSshsBa55JgqVaVZmlYCeQ6lYVktaoW5WEIp64Jzw0zKpAQDSppquSwEcDEmd4Nv54PV3tiAZh0DtWiC5ryIr6X5idq57rtHH_Sm610bg2nOWCEypjIWKTZQxnXeO6z1ztmmdHvNQB-a1UOzOjarD81qiBo-aHxk2xW6k_P_oj9HGnqH</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Allmaras, J. P.</creator><creator>Kozorezov, A. G.</creator><creator>Beyer, A. D.</creator><creator>Marsili, F.</creator><creator>Briggs, R. M.</creator><creator>Shaw, M. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9621-289X</orcidid></search><sort><creationdate>20181101</creationdate><title>Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires</title><author>Allmaras, J. P. ; Kozorezov, A. G. ; Beyer, A. D. ; Marsili, F. ; Briggs, R. M. ; Shaw, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-6d33ef3672e499d4544d3e260ac15f3f9e63b0a7f822c1c41770c097cdbb83023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALIBRATION</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>COOLING TIME</topic><topic>HEAT</topic><topic>HEAT TRANSFER</topic><topic>HEATERS</topic><topic>Low temperature physics</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOWIRES</topic><topic>PHOTONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>SIMULATION</topic><topic>Substrates</topic><topic>Superconductivity</topic><topic>SUPERCONDUCTORS</topic><topic>Switching</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THIN FILMS</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allmaras, J. P.</creatorcontrib><creatorcontrib>Kozorezov, A. G.</creatorcontrib><creatorcontrib>Beyer, A. D.</creatorcontrib><creatorcontrib>Marsili, F.</creatorcontrib><creatorcontrib>Briggs, R. M.</creatorcontrib><creatorcontrib>Shaw, M. D.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of low temperature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allmaras, J. P.</au><au>Kozorezov, A. G.</au><au>Beyer, A. D.</au><au>Marsili, F.</au><au>Briggs, R. M.</au><au>Shaw, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires</atitle><jtitle>Journal of low temperature physics</jtitle><stitle>J Low Temp Phys</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>193</volume><issue>3-4</issue><spage>380</spage><epage>386</epage><pages>380-386</pages><issn>0022-2291</issn><eissn>1573-7357</eissn><abstract>We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10909-018-2022-0</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9621-289X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2291
ispartof Journal of low temperature physics, 2018-11, Vol.193 (3-4), p.380-386
issn 0022-2291
1573-7357
language eng
recordid cdi_osti_scitechconnect_22809846
source SpringerLink Journals - AutoHoldings
subjects CALIBRATION
Characterization and Evaluation of Materials
Condensed Matter Physics
COOLING TIME
HEAT
HEAT TRANSFER
HEATERS
Low temperature physics
Magnetic Materials
Magnetism
NANOSCIENCE AND NANOTECHNOLOGY
NANOWIRES
PHOTONS
Physics
Physics and Astronomy
SIMULATION
Substrates
Superconductivity
SUPERCONDUCTORS
Switching
THERMAL CONDUCTIVITY
THIN FILMS
Transport properties
title Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-Film%20Thermal%20Conductivity%20Measurements%20Using%20Superconducting%20Nanowires&rft.jtitle=Journal%20of%20low%20temperature%20physics&rft.au=Allmaras,%20J.%20P.&rft.date=2018-11-01&rft.volume=193&rft.issue=3-4&rft.spage=380&rft.epage=386&rft.pages=380-386&rft.issn=0022-2291&rft.eissn=1573-7357&rft_id=info:doi/10.1007/s10909-018-2022-0&rft_dat=%3Cproquest_osti_%3E2118351951%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118351951&rft_id=info:pmid/&rfr_iscdi=true