Enhanced rate performance of Li3V2(PO4)3/C cathode by an improved rheological phase assisted microwave method

Rheological phase assisted microwave heating, for the first time, was utilized to prepare Li3V2(PO4)3/C composite by combining both advantages of rheological phase method and microwave irradiation. Benefiting from merits of both synthesis routes, the composite possesses an ultrahigh specific capacit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research bulletin 2018-10, Vol.106, p.250-256
Hauptverfasser: Yan, Ji, Wang, Pei, Fang, Hua, Wang, Li-Xia, Li, Lei, Gao, Hai-Li, Wang, Li-Zhen, Zhang, Lin-Sen, Song, Yan-Hua, Tang, Zhi-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue
container_start_page 250
container_title Materials research bulletin
container_volume 106
creator Yan, Ji
Wang, Pei
Fang, Hua
Wang, Li-Xia
Li, Lei
Gao, Hai-Li
Wang, Li-Zhen
Zhang, Lin-Sen
Song, Yan-Hua
Tang, Zhi-Yuan
description Rheological phase assisted microwave heating, for the first time, was utilized to prepare Li3V2(PO4)3/C composite by combining both advantages of rheological phase method and microwave irradiation. Benefiting from merits of both synthesis routes, the composite possesses an ultrahigh specific capacity of 101.8 mA h g−1 at 50 C rate and does not show any significant decay after long cycling life. [Display omitted] •Rheological phase assisted microwave can utilize both advantages of two methods.•Polyethylene glycol was used as both rheological medium and carbon precursor.•101.8 mA h g−1 of specific capacity was obtained at 50 C rates. In this study, high-rate Li3V2(PO4)3/C composite is successfully synthesized via an improved rheological phase assisted microwave method using polyethylene glycol as both rheological medium and carbon precursor. The relatively uniform Li3V2(PO4)3 particles are encapsulated in amorphous carbon architecture to form core-shell structure, providing effective electron and ion transport. When used as a cathode material in lithium ion battery, the Li3V2(PO4)3/C composite displays a maximum discharge capacity of 101.8 mA h g−1 at 50 C charge/discharge rate and still possesses 98.3% of capacity retention after 100 cycles, demonstrating superior rate capability and excellent cycling stability when compared with bare Li3V2(PO4)3. The observed electrochemical performance could be attributed to uniform coated-carbon pyrolysis from polyethylene glycol rheological phase precursor and small Li3V2(PO4)3 pristine particles synthesized by the fast microwave heating route.
doi_str_mv 10.1016/j.materresbull.2018.05.021
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22805211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025540817339065</els_id><sourcerecordid>S0025540817339065</sourcerecordid><originalsourceid>FETCH-LOGICAL-e198t-1e213e8dc91ae49f3c3ab5ab8f02e650f83dcd277e6fd67cad5ecad186c982b83</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwDxZsYJHUjzhxl6iUh1SpLICt5dgT4iqJKzsU8ffEKgs2M9LMuaPRQeiakpwSWi52ea9HCAFi_dV1OSNU5kTkhNETNKOy4lnBWHWKZoQwkYmCyHN0EeOOEFLIqpqhfj20ejBgcZgO4T2Exoc-TbBv8MbxD3b7ui3u-GKFjR5bbwHXP1gP2PX74A8p2ILv_KczusP7VkfAOkYXx2nVOxP8tz4A7iFlL9FZo7sIV399jt4f12-r52yzfXpZ3W8yoEs5ZhQY5SCtWVINxbLhhuta6Fo2hEEpSCO5NZZVFZSNLSujrYCpUFmapWS15HN0c7zr4-hUNG4E0xo_DGBGxZgkglE6UQ9HCqZXDg5CIiHJcCGB1jtFiUqi1U79F62SaEWEmkTzX-35eEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced rate performance of Li3V2(PO4)3/C cathode by an improved rheological phase assisted microwave method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yan, Ji ; Wang, Pei ; Fang, Hua ; Wang, Li-Xia ; Li, Lei ; Gao, Hai-Li ; Wang, Li-Zhen ; Zhang, Lin-Sen ; Song, Yan-Hua ; Tang, Zhi-Yuan</creator><creatorcontrib>Yan, Ji ; Wang, Pei ; Fang, Hua ; Wang, Li-Xia ; Li, Lei ; Gao, Hai-Li ; Wang, Li-Zhen ; Zhang, Lin-Sen ; Song, Yan-Hua ; Tang, Zhi-Yuan</creatorcontrib><description>Rheological phase assisted microwave heating, for the first time, was utilized to prepare Li3V2(PO4)3/C composite by combining both advantages of rheological phase method and microwave irradiation. Benefiting from merits of both synthesis routes, the composite possesses an ultrahigh specific capacity of 101.8 mA h g−1 at 50 C rate and does not show any significant decay after long cycling life. [Display omitted] •Rheological phase assisted microwave can utilize both advantages of two methods.•Polyethylene glycol was used as both rheological medium and carbon precursor.•101.8 mA h g−1 of specific capacity was obtained at 50 C rates. In this study, high-rate Li3V2(PO4)3/C composite is successfully synthesized via an improved rheological phase assisted microwave method using polyethylene glycol as both rheological medium and carbon precursor. The relatively uniform Li3V2(PO4)3 particles are encapsulated in amorphous carbon architecture to form core-shell structure, providing effective electron and ion transport. When used as a cathode material in lithium ion battery, the Li3V2(PO4)3/C composite displays a maximum discharge capacity of 101.8 mA h g−1 at 50 C charge/discharge rate and still possesses 98.3% of capacity retention after 100 cycles, demonstrating superior rate capability and excellent cycling stability when compared with bare Li3V2(PO4)3. The observed electrochemical performance could be attributed to uniform coated-carbon pyrolysis from polyethylene glycol rheological phase precursor and small Li3V2(PO4)3 pristine particles synthesized by the fast microwave heating route.</description><identifier>ISSN: 0025-5408</identifier><identifier>EISSN: 1873-4227</identifier><identifier>DOI: 10.1016/j.materresbull.2018.05.021</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>CARBON ; CATHODES ; CHARGED-PARTICLE TRANSPORT ; ELECTRON TRANSFER ; LITHIUM COMPOUNDS ; LITHIUM ION BATTERIES ; Lithium vanadium phosphate ; MATERIALS SCIENCE ; Microwave ; MICROWAVE RADIATION ; Polyethylene glycol ; POLYETHYLENE GLYCOLS ; PYROLYSIS ; Rheological phase ; RHEOLOGY ; VANADIUM PHOSPHATES</subject><ispartof>Materials research bulletin, 2018-10, Vol.106, p.250-256</ispartof><rights>2018 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.materresbull.2018.05.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27925,27926,45996</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22805211$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Ji</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Fang, Hua</creatorcontrib><creatorcontrib>Wang, Li-Xia</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Gao, Hai-Li</creatorcontrib><creatorcontrib>Wang, Li-Zhen</creatorcontrib><creatorcontrib>Zhang, Lin-Sen</creatorcontrib><creatorcontrib>Song, Yan-Hua</creatorcontrib><creatorcontrib>Tang, Zhi-Yuan</creatorcontrib><title>Enhanced rate performance of Li3V2(PO4)3/C cathode by an improved rheological phase assisted microwave method</title><title>Materials research bulletin</title><description>Rheological phase assisted microwave heating, for the first time, was utilized to prepare Li3V2(PO4)3/C composite by combining both advantages of rheological phase method and microwave irradiation. Benefiting from merits of both synthesis routes, the composite possesses an ultrahigh specific capacity of 101.8 mA h g−1 at 50 C rate and does not show any significant decay after long cycling life. [Display omitted] •Rheological phase assisted microwave can utilize both advantages of two methods.•Polyethylene glycol was used as both rheological medium and carbon precursor.•101.8 mA h g−1 of specific capacity was obtained at 50 C rates. In this study, high-rate Li3V2(PO4)3/C composite is successfully synthesized via an improved rheological phase assisted microwave method using polyethylene glycol as both rheological medium and carbon precursor. The relatively uniform Li3V2(PO4)3 particles are encapsulated in amorphous carbon architecture to form core-shell structure, providing effective electron and ion transport. When used as a cathode material in lithium ion battery, the Li3V2(PO4)3/C composite displays a maximum discharge capacity of 101.8 mA h g−1 at 50 C charge/discharge rate and still possesses 98.3% of capacity retention after 100 cycles, demonstrating superior rate capability and excellent cycling stability when compared with bare Li3V2(PO4)3. The observed electrochemical performance could be attributed to uniform coated-carbon pyrolysis from polyethylene glycol rheological phase precursor and small Li3V2(PO4)3 pristine particles synthesized by the fast microwave heating route.</description><subject>CARBON</subject><subject>CATHODES</subject><subject>CHARGED-PARTICLE TRANSPORT</subject><subject>ELECTRON TRANSFER</subject><subject>LITHIUM COMPOUNDS</subject><subject>LITHIUM ION BATTERIES</subject><subject>Lithium vanadium phosphate</subject><subject>MATERIALS SCIENCE</subject><subject>Microwave</subject><subject>MICROWAVE RADIATION</subject><subject>Polyethylene glycol</subject><subject>POLYETHYLENE GLYCOLS</subject><subject>PYROLYSIS</subject><subject>Rheological phase</subject><subject>RHEOLOGY</subject><subject>VANADIUM PHOSPHATES</subject><issn>0025-5408</issn><issn>1873-4227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwDxZsYJHUjzhxl6iUh1SpLICt5dgT4iqJKzsU8ffEKgs2M9LMuaPRQeiakpwSWi52ea9HCAFi_dV1OSNU5kTkhNETNKOy4lnBWHWKZoQwkYmCyHN0EeOOEFLIqpqhfj20ejBgcZgO4T2Exoc-TbBv8MbxD3b7ui3u-GKFjR5bbwHXP1gP2PX74A8p2ILv_KczusP7VkfAOkYXx2nVOxP8tz4A7iFlL9FZo7sIV399jt4f12-r52yzfXpZ3W8yoEs5ZhQY5SCtWVINxbLhhuta6Fo2hEEpSCO5NZZVFZSNLSujrYCpUFmapWS15HN0c7zr4-hUNG4E0xo_DGBGxZgkglE6UQ9HCqZXDg5CIiHJcCGB1jtFiUqi1U79F62SaEWEmkTzX-35eEA</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Yan, Ji</creator><creator>Wang, Pei</creator><creator>Fang, Hua</creator><creator>Wang, Li-Xia</creator><creator>Li, Lei</creator><creator>Gao, Hai-Li</creator><creator>Wang, Li-Zhen</creator><creator>Zhang, Lin-Sen</creator><creator>Song, Yan-Hua</creator><creator>Tang, Zhi-Yuan</creator><general>Elsevier Ltd</general><scope>OTOTI</scope></search><sort><creationdate>20181001</creationdate><title>Enhanced rate performance of Li3V2(PO4)3/C cathode by an improved rheological phase assisted microwave method</title><author>Yan, Ji ; Wang, Pei ; Fang, Hua ; Wang, Li-Xia ; Li, Lei ; Gao, Hai-Li ; Wang, Li-Zhen ; Zhang, Lin-Sen ; Song, Yan-Hua ; Tang, Zhi-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e198t-1e213e8dc91ae49f3c3ab5ab8f02e650f83dcd277e6fd67cad5ecad186c982b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CARBON</topic><topic>CATHODES</topic><topic>CHARGED-PARTICLE TRANSPORT</topic><topic>ELECTRON TRANSFER</topic><topic>LITHIUM COMPOUNDS</topic><topic>LITHIUM ION BATTERIES</topic><topic>Lithium vanadium phosphate</topic><topic>MATERIALS SCIENCE</topic><topic>Microwave</topic><topic>MICROWAVE RADIATION</topic><topic>Polyethylene glycol</topic><topic>POLYETHYLENE GLYCOLS</topic><topic>PYROLYSIS</topic><topic>Rheological phase</topic><topic>RHEOLOGY</topic><topic>VANADIUM PHOSPHATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ji</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><creatorcontrib>Fang, Hua</creatorcontrib><creatorcontrib>Wang, Li-Xia</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Gao, Hai-Li</creatorcontrib><creatorcontrib>Wang, Li-Zhen</creatorcontrib><creatorcontrib>Zhang, Lin-Sen</creatorcontrib><creatorcontrib>Song, Yan-Hua</creatorcontrib><creatorcontrib>Tang, Zhi-Yuan</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Materials research bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ji</au><au>Wang, Pei</au><au>Fang, Hua</au><au>Wang, Li-Xia</au><au>Li, Lei</au><au>Gao, Hai-Li</au><au>Wang, Li-Zhen</au><au>Zhang, Lin-Sen</au><au>Song, Yan-Hua</au><au>Tang, Zhi-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced rate performance of Li3V2(PO4)3/C cathode by an improved rheological phase assisted microwave method</atitle><jtitle>Materials research bulletin</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>106</volume><spage>250</spage><epage>256</epage><pages>250-256</pages><issn>0025-5408</issn><eissn>1873-4227</eissn><abstract>Rheological phase assisted microwave heating, for the first time, was utilized to prepare Li3V2(PO4)3/C composite by combining both advantages of rheological phase method and microwave irradiation. Benefiting from merits of both synthesis routes, the composite possesses an ultrahigh specific capacity of 101.8 mA h g−1 at 50 C rate and does not show any significant decay after long cycling life. [Display omitted] •Rheological phase assisted microwave can utilize both advantages of two methods.•Polyethylene glycol was used as both rheological medium and carbon precursor.•101.8 mA h g−1 of specific capacity was obtained at 50 C rates. In this study, high-rate Li3V2(PO4)3/C composite is successfully synthesized via an improved rheological phase assisted microwave method using polyethylene glycol as both rheological medium and carbon precursor. The relatively uniform Li3V2(PO4)3 particles are encapsulated in amorphous carbon architecture to form core-shell structure, providing effective electron and ion transport. When used as a cathode material in lithium ion battery, the Li3V2(PO4)3/C composite displays a maximum discharge capacity of 101.8 mA h g−1 at 50 C charge/discharge rate and still possesses 98.3% of capacity retention after 100 cycles, demonstrating superior rate capability and excellent cycling stability when compared with bare Li3V2(PO4)3. The observed electrochemical performance could be attributed to uniform coated-carbon pyrolysis from polyethylene glycol rheological phase precursor and small Li3V2(PO4)3 pristine particles synthesized by the fast microwave heating route.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.materresbull.2018.05.021</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5408
ispartof Materials research bulletin, 2018-10, Vol.106, p.250-256
issn 0025-5408
1873-4227
language eng
recordid cdi_osti_scitechconnect_22805211
source Access via ScienceDirect (Elsevier)
subjects CARBON
CATHODES
CHARGED-PARTICLE TRANSPORT
ELECTRON TRANSFER
LITHIUM COMPOUNDS
LITHIUM ION BATTERIES
Lithium vanadium phosphate
MATERIALS SCIENCE
Microwave
MICROWAVE RADIATION
Polyethylene glycol
POLYETHYLENE GLYCOLS
PYROLYSIS
Rheological phase
RHEOLOGY
VANADIUM PHOSPHATES
title Enhanced rate performance of Li3V2(PO4)3/C cathode by an improved rheological phase assisted microwave method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20rate%20performance%20of%20Li3V2(PO4)3/C%20cathode%20by%20an%20improved%20rheological%20phase%20assisted%20microwave%20method&rft.jtitle=Materials%20research%20bulletin&rft.au=Yan,%20Ji&rft.date=2018-10-01&rft.volume=106&rft.spage=250&rft.epage=256&rft.pages=250-256&rft.issn=0025-5408&rft.eissn=1873-4227&rft_id=info:doi/10.1016/j.materresbull.2018.05.021&rft_dat=%3Celsevier_osti_%3ES0025540817339065%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0025540817339065&rfr_iscdi=true