Coalescence growth mechanism of inserted tin dioxide belts in polycrystalline SnO2-based ceramics

SnO2-based varistors have been considered promising technological devices. However their practical application is usually stated as limited to high voltage circuits based on the high breakdown electric field exhibited by these ceramics. Recently, authors have shown that the insertion of one-dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials characterization 2018-08, Vol.142, p.289-294
Hauptverfasser: Masteghin, Mateus G., Bertinotti, Rafael C., Orlandi, Marcelo O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue
container_start_page 289
container_title Materials characterization
container_volume 142
creator Masteghin, Mateus G.
Bertinotti, Rafael C.
Orlandi, Marcelo O.
description SnO2-based varistors have been considered promising technological devices. However their practical application is usually stated as limited to high voltage circuits based on the high breakdown electric field exhibited by these ceramics. Recently, authors have shown that the insertion of one-dimensional (1D) SnO2 belts allows overcoming this limitation. In this work, we present a detailed study of the growth mechanism of the belts inside varistors using electron microscopy techniques. We were able to show that mass transport has an intrinsic dependence on the sintering time and requires similar crystalline structure between the belts and the matrix. Dual beam and high-resolution transmission electron microscopy techniques permitted determining that 3D growth of belts occurs by coalescence. [Display omitted] •Grain growth in SnO2-based varistors was studied.•The growth of 1D SnO2 belts in the SnO2-CoO-Cr2O3-Nb2O5 system occurs by coalescence process.•Cross-Section and Tomography images showed tridimensional and pore free “giant grains”.•TEM was used to prove the alignment of the grains towards the SnO2 belt.•The coalescence growth just occurs with 1D structure and grains having the same crystal structure.
doi_str_mv 10.1016/j.matchar.2018.05.027
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22805073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580318305394</els_id><sourcerecordid>S1044580318305394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-48e513d4d5ef109ddea842f9e8173c4e4bf1d33042b34fddb6bc85d9e6c37c4b3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BCHguTVpkjY9iSz-g4U9qOeQJlM3S9ssSVD325uye_c0A_PmzbwfQreUlJTQ-n5XjjqZrQ5lRagsiShJ1ZyhBZUNKziV7XnuCeeFkIRdoqsYd4SQWtJmgfTK6wGigckA_gr-J23xCNlscnHEvsduihASWJzchK3zv84C7mBIMY_w3g8HEw4x6WFwE-D3aVMVnY5ZbyDo0Zl4jS56PUS4OdUl-nx--li9FuvNy9vqcV0YXtFUcAmCMsutgJ6S1lrQkld9C_lNZjjwrqeWMcKrjvHe2q7ujBS2hdqwxvCOLdHd0dfH5FQ0LuUYxk8TmKSqShJBGpZV4qgywccYoFf74EYdDooSNdNUO3WiqWaaigiVaea9h-Me5AjfDsJ8YYZmXZgPWO_-cfgDZ26CYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coalescence growth mechanism of inserted tin dioxide belts in polycrystalline SnO2-based ceramics</title><source>Elsevier ScienceDirect Journals</source><creator>Masteghin, Mateus G. ; Bertinotti, Rafael C. ; Orlandi, Marcelo O.</creator><creatorcontrib>Masteghin, Mateus G. ; Bertinotti, Rafael C. ; Orlandi, Marcelo O.</creatorcontrib><description>SnO2-based varistors have been considered promising technological devices. However their practical application is usually stated as limited to high voltage circuits based on the high breakdown electric field exhibited by these ceramics. Recently, authors have shown that the insertion of one-dimensional (1D) SnO2 belts allows overcoming this limitation. In this work, we present a detailed study of the growth mechanism of the belts inside varistors using electron microscopy techniques. We were able to show that mass transport has an intrinsic dependence on the sintering time and requires similar crystalline structure between the belts and the matrix. Dual beam and high-resolution transmission electron microscopy techniques permitted determining that 3D growth of belts occurs by coalescence. [Display omitted] •Grain growth in SnO2-based varistors was studied.•The growth of 1D SnO2 belts in the SnO2-CoO-Cr2O3-Nb2O5 system occurs by coalescence process.•Cross-Section and Tomography images showed tridimensional and pore free “giant grains”.•TEM was used to prove the alignment of the grains towards the SnO2 belt.•The coalescence growth just occurs with 1D structure and grains having the same crystal structure.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2018.05.027</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>A) SnO2 ; A) Varistor ; B) Coalescence ; B) Ostwald-ripening ; C) Growth mechanism ; CERAMICS ; CHROMIUM OXIDES ; COBALT OXIDES ; CRYSTAL STRUCTURE ; D) Electron microscopy ; ELECTRIC FIELDS ; MATERIALS SCIENCE ; NIOBIUM OXIDES ; POLYCRYSTALS ; SEMICONDUCTOR RESISTORS ; SINTERING ; TIN OXIDES ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>Materials characterization, 2018-08, Vol.142, p.289-294</ispartof><rights>2018 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-48e513d4d5ef109ddea842f9e8173c4e4bf1d33042b34fddb6bc85d9e6c37c4b3</citedby><cites>FETCH-LOGICAL-c421t-48e513d4d5ef109ddea842f9e8173c4e4bf1d33042b34fddb6bc85d9e6c37c4b3</cites><orcidid>0000-0002-2054-3235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchar.2018.05.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22805073$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Masteghin, Mateus G.</creatorcontrib><creatorcontrib>Bertinotti, Rafael C.</creatorcontrib><creatorcontrib>Orlandi, Marcelo O.</creatorcontrib><title>Coalescence growth mechanism of inserted tin dioxide belts in polycrystalline SnO2-based ceramics</title><title>Materials characterization</title><description>SnO2-based varistors have been considered promising technological devices. However their practical application is usually stated as limited to high voltage circuits based on the high breakdown electric field exhibited by these ceramics. Recently, authors have shown that the insertion of one-dimensional (1D) SnO2 belts allows overcoming this limitation. In this work, we present a detailed study of the growth mechanism of the belts inside varistors using electron microscopy techniques. We were able to show that mass transport has an intrinsic dependence on the sintering time and requires similar crystalline structure between the belts and the matrix. Dual beam and high-resolution transmission electron microscopy techniques permitted determining that 3D growth of belts occurs by coalescence. [Display omitted] •Grain growth in SnO2-based varistors was studied.•The growth of 1D SnO2 belts in the SnO2-CoO-Cr2O3-Nb2O5 system occurs by coalescence process.•Cross-Section and Tomography images showed tridimensional and pore free “giant grains”.•TEM was used to prove the alignment of the grains towards the SnO2 belt.•The coalescence growth just occurs with 1D structure and grains having the same crystal structure.</description><subject>A) SnO2</subject><subject>A) Varistor</subject><subject>B) Coalescence</subject><subject>B) Ostwald-ripening</subject><subject>C) Growth mechanism</subject><subject>CERAMICS</subject><subject>CHROMIUM OXIDES</subject><subject>COBALT OXIDES</subject><subject>CRYSTAL STRUCTURE</subject><subject>D) Electron microscopy</subject><subject>ELECTRIC FIELDS</subject><subject>MATERIALS SCIENCE</subject><subject>NIOBIUM OXIDES</subject><subject>POLYCRYSTALS</subject><subject>SEMICONDUCTOR RESISTORS</subject><subject>SINTERING</subject><subject>TIN OXIDES</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BCHguTVpkjY9iSz-g4U9qOeQJlM3S9ssSVD325uye_c0A_PmzbwfQreUlJTQ-n5XjjqZrQ5lRagsiShJ1ZyhBZUNKziV7XnuCeeFkIRdoqsYd4SQWtJmgfTK6wGigckA_gr-J23xCNlscnHEvsduihASWJzchK3zv84C7mBIMY_w3g8HEw4x6WFwE-D3aVMVnY5ZbyDo0Zl4jS56PUS4OdUl-nx--li9FuvNy9vqcV0YXtFUcAmCMsutgJ6S1lrQkld9C_lNZjjwrqeWMcKrjvHe2q7ujBS2hdqwxvCOLdHd0dfH5FQ0LuUYxk8TmKSqShJBGpZV4qgywccYoFf74EYdDooSNdNUO3WiqWaaigiVaea9h-Me5AjfDsJ8YYZmXZgPWO_-cfgDZ26CYA</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Masteghin, Mateus G.</creator><creator>Bertinotti, Rafael C.</creator><creator>Orlandi, Marcelo O.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2054-3235</orcidid></search><sort><creationdate>20180801</creationdate><title>Coalescence growth mechanism of inserted tin dioxide belts in polycrystalline SnO2-based ceramics</title><author>Masteghin, Mateus G. ; Bertinotti, Rafael C. ; Orlandi, Marcelo O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-48e513d4d5ef109ddea842f9e8173c4e4bf1d33042b34fddb6bc85d9e6c37c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A) SnO2</topic><topic>A) Varistor</topic><topic>B) Coalescence</topic><topic>B) Ostwald-ripening</topic><topic>C) Growth mechanism</topic><topic>CERAMICS</topic><topic>CHROMIUM OXIDES</topic><topic>COBALT OXIDES</topic><topic>CRYSTAL STRUCTURE</topic><topic>D) Electron microscopy</topic><topic>ELECTRIC FIELDS</topic><topic>MATERIALS SCIENCE</topic><topic>NIOBIUM OXIDES</topic><topic>POLYCRYSTALS</topic><topic>SEMICONDUCTOR RESISTORS</topic><topic>SINTERING</topic><topic>TIN OXIDES</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masteghin, Mateus G.</creatorcontrib><creatorcontrib>Bertinotti, Rafael C.</creatorcontrib><creatorcontrib>Orlandi, Marcelo O.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masteghin, Mateus G.</au><au>Bertinotti, Rafael C.</au><au>Orlandi, Marcelo O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coalescence growth mechanism of inserted tin dioxide belts in polycrystalline SnO2-based ceramics</atitle><jtitle>Materials characterization</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>142</volume><spage>289</spage><epage>294</epage><pages>289-294</pages><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>SnO2-based varistors have been considered promising technological devices. However their practical application is usually stated as limited to high voltage circuits based on the high breakdown electric field exhibited by these ceramics. Recently, authors have shown that the insertion of one-dimensional (1D) SnO2 belts allows overcoming this limitation. In this work, we present a detailed study of the growth mechanism of the belts inside varistors using electron microscopy techniques. We were able to show that mass transport has an intrinsic dependence on the sintering time and requires similar crystalline structure between the belts and the matrix. Dual beam and high-resolution transmission electron microscopy techniques permitted determining that 3D growth of belts occurs by coalescence. [Display omitted] •Grain growth in SnO2-based varistors was studied.•The growth of 1D SnO2 belts in the SnO2-CoO-Cr2O3-Nb2O5 system occurs by coalescence process.•Cross-Section and Tomography images showed tridimensional and pore free “giant grains”.•TEM was used to prove the alignment of the grains towards the SnO2 belt.•The coalescence growth just occurs with 1D structure and grains having the same crystal structure.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2018.05.027</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2054-3235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-5803
ispartof Materials characterization, 2018-08, Vol.142, p.289-294
issn 1044-5803
1873-4189
language eng
recordid cdi_osti_scitechconnect_22805073
source Elsevier ScienceDirect Journals
subjects A) SnO2
A) Varistor
B) Coalescence
B) Ostwald-ripening
C) Growth mechanism
CERAMICS
CHROMIUM OXIDES
COBALT OXIDES
CRYSTAL STRUCTURE
D) Electron microscopy
ELECTRIC FIELDS
MATERIALS SCIENCE
NIOBIUM OXIDES
POLYCRYSTALS
SEMICONDUCTOR RESISTORS
SINTERING
TIN OXIDES
TRANSMISSION ELECTRON MICROSCOPY
title Coalescence growth mechanism of inserted tin dioxide belts in polycrystalline SnO2-based ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coalescence%20growth%20mechanism%20of%20inserted%20tin%20dioxide%20belts%20in%20polycrystalline%20SnO2-based%20ceramics&rft.jtitle=Materials%20characterization&rft.au=Masteghin,%20Mateus%20G.&rft.date=2018-08-01&rft.volume=142&rft.spage=289&rft.epage=294&rft.pages=289-294&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2018.05.027&rft_dat=%3Celsevier_osti_%3ES1044580318305394%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1044580318305394&rfr_iscdi=true