The Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet

Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2024-02, Vol.37 (3), p.779-799
Hauptverfasser: Wille, Jonathan D., Alexander, Simon P., Amory, Charles, Baiman, Rebecca, Barthélemy, Léonard, Bergstrom, Dana M., Berne, Alexis, Binder, Hanin, Blanchet, Juliette, Bozkurt, Deniz, Bracegirdle, Thomas J., Casado, Mathieu, Choi, Taejin, Clem, Kyle R., Codron, Francis, Datta, Rajashree, Battista, Stefano Di, Favier, Vincent, Francis, Diana, Fraser, Alexander D., Fourré, Elise, Garreaud, René D., Genthon, Christophe, Gorodetskaya, Irina V., González-Herrero, Sergi, Heinrich, Victoria J., Hubert, Guillaume, Joos, Hanna, Kim, Seong-Joong, King, John C., Kittel, Christoph, Landais, Amaelle, Lazzara, Matthew, Leonard, Gregory H., Lieser, Jan L., Maclennan, Michelle, Mikolajczyk, David, Neff, Peter, Ollivier, Inès, Picard, Ghislain, Pohl, Benjamin, Ralph, F. Martin, Rowe, Penny, Schlosser, Elisabeth, Shields, Christine A., Smith, Inga J., Sprenger, Michael, Trusel, Luke, Udy, Danielle, Vance, Tessa, Vignon, Étienne, Walker, Catherine, Wever, Nander, Zou, Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 799
container_issue 3
container_start_page 779
container_title Journal of climate
container_volume 37
creator Wille, Jonathan D.
Alexander, Simon P.
Amory, Charles
Baiman, Rebecca
Barthélemy, Léonard
Bergstrom, Dana M.
Berne, Alexis
Binder, Hanin
Blanchet, Juliette
Bozkurt, Deniz
Bracegirdle, Thomas J.
Casado, Mathieu
Choi, Taejin
Clem, Kyle R.
Codron, Francis
Datta, Rajashree
Battista, Stefano Di
Favier, Vincent
Francis, Diana
Fraser, Alexander D.
Fourré, Elise
Garreaud, René D.
Genthon, Christophe
Gorodetskaya, Irina V.
González-Herrero, Sergi
Heinrich, Victoria J.
Hubert, Guillaume
Joos, Hanna
Kim, Seong-Joong
King, John C.
Kittel, Christoph
Landais, Amaelle
Lazzara, Matthew
Leonard, Gregory H.
Lieser, Jan L.
Maclennan, Michelle
Mikolajczyk, David
Neff, Peter
Ollivier, Inès
Picard, Ghislain
Pohl, Benjamin
Ralph, F. Martin
Rowe, Penny
Schlosser, Elisabeth
Shields, Christine A.
Smith, Inga J.
Sprenger, Michael
Trusel, Luke
Udy, Danielle
Vance, Tessa
Vignon, Étienne
Walker, Catherine
Wever, Nander
Zou, Xun
description Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent.
doi_str_mv 10.1175/JCLI-D-23-0176.1
format Article
fullrecord <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2280447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04289361v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-64ed50a8c422098a940064926244619b85014eae1b52b79a8cedf54737a81bf83</originalsourceid><addsrcrecordid>eNo9kcFO3DAQhq2qSN1C7z1avXHIdjx2Eofbatl2gxZRqVQ9Wo53lrhaEmSbFb3xIO3L8SQkBHGa0ej7_sP8jH0WMBeizL9eLDd1dp6hzECUxVy8YzORI2SgFL5nM9CVynSZ5x_Yxxj_AAgsAGbMX7fEVw8p2D5sfWfDX35pg2s5AiJf2Zj4okvDJXln-dPjvzXZ9PT4n_-2B5rzHzYkXtdnvL69sy5F3nc8DYlvDq8d8Z8tUTphRzu7j_TpdR6zX99W18t1trn6Xi8Xm8wpWaasULTNwWqnEKHStlIAhaqwQKUKUTU6B6HIkmhybMpqAGm7y1UpS6tFs9PymH2ZcvuYvInOJ3Kt67uOXDKIenhIOUBygvaebsj0ofHmgKa3ftrv9zfGOtPQYBTaSKiEEIN1Olmt3Zu74G-Hd70468XGjDdQqCtZiMPIwsS60McYaPcmCDBjY2ZszJwblGZszAj5DDz9hsA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet</title><source>American Meteorological Society</source><creator>Wille, Jonathan D. ; Alexander, Simon P. ; Amory, Charles ; Baiman, Rebecca ; Barthélemy, Léonard ; Bergstrom, Dana M. ; Berne, Alexis ; Binder, Hanin ; Blanchet, Juliette ; Bozkurt, Deniz ; Bracegirdle, Thomas J. ; Casado, Mathieu ; Choi, Taejin ; Clem, Kyle R. ; Codron, Francis ; Datta, Rajashree ; Battista, Stefano Di ; Favier, Vincent ; Francis, Diana ; Fraser, Alexander D. ; Fourré, Elise ; Garreaud, René D. ; Genthon, Christophe ; Gorodetskaya, Irina V. ; González-Herrero, Sergi ; Heinrich, Victoria J. ; Hubert, Guillaume ; Joos, Hanna ; Kim, Seong-Joong ; King, John C. ; Kittel, Christoph ; Landais, Amaelle ; Lazzara, Matthew ; Leonard, Gregory H. ; Lieser, Jan L. ; Maclennan, Michelle ; Mikolajczyk, David ; Neff, Peter ; Ollivier, Inès ; Picard, Ghislain ; Pohl, Benjamin ; Ralph, F. Martin ; Rowe, Penny ; Schlosser, Elisabeth ; Shields, Christine A. ; Smith, Inga J. ; Sprenger, Michael ; Trusel, Luke ; Udy, Danielle ; Vance, Tessa ; Vignon, Étienne ; Walker, Catherine ; Wever, Nander ; Zou, Xun</creator><creatorcontrib>Wille, Jonathan D. ; Alexander, Simon P. ; Amory, Charles ; Baiman, Rebecca ; Barthélemy, Léonard ; Bergstrom, Dana M. ; Berne, Alexis ; Binder, Hanin ; Blanchet, Juliette ; Bozkurt, Deniz ; Bracegirdle, Thomas J. ; Casado, Mathieu ; Choi, Taejin ; Clem, Kyle R. ; Codron, Francis ; Datta, Rajashree ; Battista, Stefano Di ; Favier, Vincent ; Francis, Diana ; Fraser, Alexander D. ; Fourré, Elise ; Garreaud, René D. ; Genthon, Christophe ; Gorodetskaya, Irina V. ; González-Herrero, Sergi ; Heinrich, Victoria J. ; Hubert, Guillaume ; Joos, Hanna ; Kim, Seong-Joong ; King, John C. ; Kittel, Christoph ; Landais, Amaelle ; Lazzara, Matthew ; Leonard, Gregory H. ; Lieser, Jan L. ; Maclennan, Michelle ; Mikolajczyk, David ; Neff, Peter ; Ollivier, Inès ; Picard, Ghislain ; Pohl, Benjamin ; Ralph, F. Martin ; Rowe, Penny ; Schlosser, Elisabeth ; Shields, Christine A. ; Smith, Inga J. ; Sprenger, Michael ; Trusel, Luke ; Udy, Danielle ; Vance, Tessa ; Vignon, Étienne ; Walker, Catherine ; Wever, Nander ; Zou, Xun</creatorcontrib><description>Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent.</description><identifier>ISSN: 0894-8755</identifier><identifier>ISSN: 1520-0442</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-23-0176.1</identifier><language>eng</language><publisher>United States: American Meteorological Society</publisher><subject>Atmospheric Science ; Climatology ; Earth Sciences ; Earth sciences &amp; physical geography ; Glaciology ; Physical, chemical, mathematical &amp; earth Sciences ; Physique, chimie, mathématiques &amp; sciences de la terre ; Sciences de la terre &amp; géographie physique ; Sciences of the Universe</subject><ispartof>Journal of climate, 2024-02, Vol.37 (3), p.779-799</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-64ed50a8c422098a940064926244619b85014eae1b52b79a8cedf54737a81bf83</citedby><orcidid>0000-0002-3918-5204 ; 0000-0003-1475-5853 ; 0000-0002-8185-415X ; 0000-0003-3801-9367 ; 0000-0002-9339-797X ; 0000-0001-8088-8895 ; 0000-0001-6024-9498 ; 0009-0002-0479-2116 ; 0000-0001-7038-6189 ; 0000000239185204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3667,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04289361$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2280447$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wille, Jonathan D.</creatorcontrib><creatorcontrib>Alexander, Simon P.</creatorcontrib><creatorcontrib>Amory, Charles</creatorcontrib><creatorcontrib>Baiman, Rebecca</creatorcontrib><creatorcontrib>Barthélemy, Léonard</creatorcontrib><creatorcontrib>Bergstrom, Dana M.</creatorcontrib><creatorcontrib>Berne, Alexis</creatorcontrib><creatorcontrib>Binder, Hanin</creatorcontrib><creatorcontrib>Blanchet, Juliette</creatorcontrib><creatorcontrib>Bozkurt, Deniz</creatorcontrib><creatorcontrib>Bracegirdle, Thomas J.</creatorcontrib><creatorcontrib>Casado, Mathieu</creatorcontrib><creatorcontrib>Choi, Taejin</creatorcontrib><creatorcontrib>Clem, Kyle R.</creatorcontrib><creatorcontrib>Codron, Francis</creatorcontrib><creatorcontrib>Datta, Rajashree</creatorcontrib><creatorcontrib>Battista, Stefano Di</creatorcontrib><creatorcontrib>Favier, Vincent</creatorcontrib><creatorcontrib>Francis, Diana</creatorcontrib><creatorcontrib>Fraser, Alexander D.</creatorcontrib><creatorcontrib>Fourré, Elise</creatorcontrib><creatorcontrib>Garreaud, René D.</creatorcontrib><creatorcontrib>Genthon, Christophe</creatorcontrib><creatorcontrib>Gorodetskaya, Irina V.</creatorcontrib><creatorcontrib>González-Herrero, Sergi</creatorcontrib><creatorcontrib>Heinrich, Victoria J.</creatorcontrib><creatorcontrib>Hubert, Guillaume</creatorcontrib><creatorcontrib>Joos, Hanna</creatorcontrib><creatorcontrib>Kim, Seong-Joong</creatorcontrib><creatorcontrib>King, John C.</creatorcontrib><creatorcontrib>Kittel, Christoph</creatorcontrib><creatorcontrib>Landais, Amaelle</creatorcontrib><creatorcontrib>Lazzara, Matthew</creatorcontrib><creatorcontrib>Leonard, Gregory H.</creatorcontrib><creatorcontrib>Lieser, Jan L.</creatorcontrib><creatorcontrib>Maclennan, Michelle</creatorcontrib><creatorcontrib>Mikolajczyk, David</creatorcontrib><creatorcontrib>Neff, Peter</creatorcontrib><creatorcontrib>Ollivier, Inès</creatorcontrib><creatorcontrib>Picard, Ghislain</creatorcontrib><creatorcontrib>Pohl, Benjamin</creatorcontrib><creatorcontrib>Ralph, F. Martin</creatorcontrib><creatorcontrib>Rowe, Penny</creatorcontrib><creatorcontrib>Schlosser, Elisabeth</creatorcontrib><creatorcontrib>Shields, Christine A.</creatorcontrib><creatorcontrib>Smith, Inga J.</creatorcontrib><creatorcontrib>Sprenger, Michael</creatorcontrib><creatorcontrib>Trusel, Luke</creatorcontrib><creatorcontrib>Udy, Danielle</creatorcontrib><creatorcontrib>Vance, Tessa</creatorcontrib><creatorcontrib>Vignon, Étienne</creatorcontrib><creatorcontrib>Walker, Catherine</creatorcontrib><creatorcontrib>Wever, Nander</creatorcontrib><creatorcontrib>Zou, Xun</creatorcontrib><title>The Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet</title><title>Journal of climate</title><description>Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent.</description><subject>Atmospheric Science</subject><subject>Climatology</subject><subject>Earth Sciences</subject><subject>Earth sciences &amp; physical geography</subject><subject>Glaciology</subject><subject>Physical, chemical, mathematical &amp; earth Sciences</subject><subject>Physique, chimie, mathématiques &amp; sciences de la terre</subject><subject>Sciences de la terre &amp; géographie physique</subject><subject>Sciences of the Universe</subject><issn>0894-8755</issn><issn>1520-0442</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kcFO3DAQhq2qSN1C7z1avXHIdjx2Eofbatl2gxZRqVQ9Wo53lrhaEmSbFb3xIO3L8SQkBHGa0ej7_sP8jH0WMBeizL9eLDd1dp6hzECUxVy8YzORI2SgFL5nM9CVynSZ5x_Yxxj_AAgsAGbMX7fEVw8p2D5sfWfDX35pg2s5AiJf2Zj4okvDJXln-dPjvzXZ9PT4n_-2B5rzHzYkXtdnvL69sy5F3nc8DYlvDq8d8Z8tUTphRzu7j_TpdR6zX99W18t1trn6Xi8Xm8wpWaasULTNwWqnEKHStlIAhaqwQKUKUTU6B6HIkmhybMpqAGm7y1UpS6tFs9PymH2ZcvuYvInOJ3Kt67uOXDKIenhIOUBygvaebsj0ofHmgKa3ftrv9zfGOtPQYBTaSKiEEIN1Olmt3Zu74G-Hd70468XGjDdQqCtZiMPIwsS60McYaPcmCDBjY2ZszJwblGZszAj5DDz9hsA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Wille, Jonathan D.</creator><creator>Alexander, Simon P.</creator><creator>Amory, Charles</creator><creator>Baiman, Rebecca</creator><creator>Barthélemy, Léonard</creator><creator>Bergstrom, Dana M.</creator><creator>Berne, Alexis</creator><creator>Binder, Hanin</creator><creator>Blanchet, Juliette</creator><creator>Bozkurt, Deniz</creator><creator>Bracegirdle, Thomas J.</creator><creator>Casado, Mathieu</creator><creator>Choi, Taejin</creator><creator>Clem, Kyle R.</creator><creator>Codron, Francis</creator><creator>Datta, Rajashree</creator><creator>Battista, Stefano Di</creator><creator>Favier, Vincent</creator><creator>Francis, Diana</creator><creator>Fraser, Alexander D.</creator><creator>Fourré, Elise</creator><creator>Garreaud, René D.</creator><creator>Genthon, Christophe</creator><creator>Gorodetskaya, Irina V.</creator><creator>González-Herrero, Sergi</creator><creator>Heinrich, Victoria J.</creator><creator>Hubert, Guillaume</creator><creator>Joos, Hanna</creator><creator>Kim, Seong-Joong</creator><creator>King, John C.</creator><creator>Kittel, Christoph</creator><creator>Landais, Amaelle</creator><creator>Lazzara, Matthew</creator><creator>Leonard, Gregory H.</creator><creator>Lieser, Jan L.</creator><creator>Maclennan, Michelle</creator><creator>Mikolajczyk, David</creator><creator>Neff, Peter</creator><creator>Ollivier, Inès</creator><creator>Picard, Ghislain</creator><creator>Pohl, Benjamin</creator><creator>Ralph, F. Martin</creator><creator>Rowe, Penny</creator><creator>Schlosser, Elisabeth</creator><creator>Shields, Christine A.</creator><creator>Smith, Inga J.</creator><creator>Sprenger, Michael</creator><creator>Trusel, Luke</creator><creator>Udy, Danielle</creator><creator>Vance, Tessa</creator><creator>Vignon, Étienne</creator><creator>Walker, Catherine</creator><creator>Wever, Nander</creator><creator>Zou, Xun</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>Q33</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3918-5204</orcidid><orcidid>https://orcid.org/0000-0003-1475-5853</orcidid><orcidid>https://orcid.org/0000-0002-8185-415X</orcidid><orcidid>https://orcid.org/0000-0003-3801-9367</orcidid><orcidid>https://orcid.org/0000-0002-9339-797X</orcidid><orcidid>https://orcid.org/0000-0001-8088-8895</orcidid><orcidid>https://orcid.org/0000-0001-6024-9498</orcidid><orcidid>https://orcid.org/0009-0002-0479-2116</orcidid><orcidid>https://orcid.org/0000-0001-7038-6189</orcidid><orcidid>https://orcid.org/0000000239185204</orcidid></search><sort><creationdate>20240201</creationdate><title>The Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet</title><author>Wille, Jonathan D. ; Alexander, Simon P. ; Amory, Charles ; Baiman, Rebecca ; Barthélemy, Léonard ; Bergstrom, Dana M. ; Berne, Alexis ; Binder, Hanin ; Blanchet, Juliette ; Bozkurt, Deniz ; Bracegirdle, Thomas J. ; Casado, Mathieu ; Choi, Taejin ; Clem, Kyle R. ; Codron, Francis ; Datta, Rajashree ; Battista, Stefano Di ; Favier, Vincent ; Francis, Diana ; Fraser, Alexander D. ; Fourré, Elise ; Garreaud, René D. ; Genthon, Christophe ; Gorodetskaya, Irina V. ; González-Herrero, Sergi ; Heinrich, Victoria J. ; Hubert, Guillaume ; Joos, Hanna ; Kim, Seong-Joong ; King, John C. ; Kittel, Christoph ; Landais, Amaelle ; Lazzara, Matthew ; Leonard, Gregory H. ; Lieser, Jan L. ; Maclennan, Michelle ; Mikolajczyk, David ; Neff, Peter ; Ollivier, Inès ; Picard, Ghislain ; Pohl, Benjamin ; Ralph, F. Martin ; Rowe, Penny ; Schlosser, Elisabeth ; Shields, Christine A. ; Smith, Inga J. ; Sprenger, Michael ; Trusel, Luke ; Udy, Danielle ; Vance, Tessa ; Vignon, Étienne ; Walker, Catherine ; Wever, Nander ; Zou, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-64ed50a8c422098a940064926244619b85014eae1b52b79a8cedf54737a81bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric Science</topic><topic>Climatology</topic><topic>Earth Sciences</topic><topic>Earth sciences &amp; physical geography</topic><topic>Glaciology</topic><topic>Physical, chemical, mathematical &amp; earth Sciences</topic><topic>Physique, chimie, mathématiques &amp; sciences de la terre</topic><topic>Sciences de la terre &amp; géographie physique</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wille, Jonathan D.</creatorcontrib><creatorcontrib>Alexander, Simon P.</creatorcontrib><creatorcontrib>Amory, Charles</creatorcontrib><creatorcontrib>Baiman, Rebecca</creatorcontrib><creatorcontrib>Barthélemy, Léonard</creatorcontrib><creatorcontrib>Bergstrom, Dana M.</creatorcontrib><creatorcontrib>Berne, Alexis</creatorcontrib><creatorcontrib>Binder, Hanin</creatorcontrib><creatorcontrib>Blanchet, Juliette</creatorcontrib><creatorcontrib>Bozkurt, Deniz</creatorcontrib><creatorcontrib>Bracegirdle, Thomas J.</creatorcontrib><creatorcontrib>Casado, Mathieu</creatorcontrib><creatorcontrib>Choi, Taejin</creatorcontrib><creatorcontrib>Clem, Kyle R.</creatorcontrib><creatorcontrib>Codron, Francis</creatorcontrib><creatorcontrib>Datta, Rajashree</creatorcontrib><creatorcontrib>Battista, Stefano Di</creatorcontrib><creatorcontrib>Favier, Vincent</creatorcontrib><creatorcontrib>Francis, Diana</creatorcontrib><creatorcontrib>Fraser, Alexander D.</creatorcontrib><creatorcontrib>Fourré, Elise</creatorcontrib><creatorcontrib>Garreaud, René D.</creatorcontrib><creatorcontrib>Genthon, Christophe</creatorcontrib><creatorcontrib>Gorodetskaya, Irina V.</creatorcontrib><creatorcontrib>González-Herrero, Sergi</creatorcontrib><creatorcontrib>Heinrich, Victoria J.</creatorcontrib><creatorcontrib>Hubert, Guillaume</creatorcontrib><creatorcontrib>Joos, Hanna</creatorcontrib><creatorcontrib>Kim, Seong-Joong</creatorcontrib><creatorcontrib>King, John C.</creatorcontrib><creatorcontrib>Kittel, Christoph</creatorcontrib><creatorcontrib>Landais, Amaelle</creatorcontrib><creatorcontrib>Lazzara, Matthew</creatorcontrib><creatorcontrib>Leonard, Gregory H.</creatorcontrib><creatorcontrib>Lieser, Jan L.</creatorcontrib><creatorcontrib>Maclennan, Michelle</creatorcontrib><creatorcontrib>Mikolajczyk, David</creatorcontrib><creatorcontrib>Neff, Peter</creatorcontrib><creatorcontrib>Ollivier, Inès</creatorcontrib><creatorcontrib>Picard, Ghislain</creatorcontrib><creatorcontrib>Pohl, Benjamin</creatorcontrib><creatorcontrib>Ralph, F. Martin</creatorcontrib><creatorcontrib>Rowe, Penny</creatorcontrib><creatorcontrib>Schlosser, Elisabeth</creatorcontrib><creatorcontrib>Shields, Christine A.</creatorcontrib><creatorcontrib>Smith, Inga J.</creatorcontrib><creatorcontrib>Sprenger, Michael</creatorcontrib><creatorcontrib>Trusel, Luke</creatorcontrib><creatorcontrib>Udy, Danielle</creatorcontrib><creatorcontrib>Vance, Tessa</creatorcontrib><creatorcontrib>Vignon, Étienne</creatorcontrib><creatorcontrib>Walker, Catherine</creatorcontrib><creatorcontrib>Wever, Nander</creatorcontrib><creatorcontrib>Zou, Xun</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>OSTI.GOV</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wille, Jonathan D.</au><au>Alexander, Simon P.</au><au>Amory, Charles</au><au>Baiman, Rebecca</au><au>Barthélemy, Léonard</au><au>Bergstrom, Dana M.</au><au>Berne, Alexis</au><au>Binder, Hanin</au><au>Blanchet, Juliette</au><au>Bozkurt, Deniz</au><au>Bracegirdle, Thomas J.</au><au>Casado, Mathieu</au><au>Choi, Taejin</au><au>Clem, Kyle R.</au><au>Codron, Francis</au><au>Datta, Rajashree</au><au>Battista, Stefano Di</au><au>Favier, Vincent</au><au>Francis, Diana</au><au>Fraser, Alexander D.</au><au>Fourré, Elise</au><au>Garreaud, René D.</au><au>Genthon, Christophe</au><au>Gorodetskaya, Irina V.</au><au>González-Herrero, Sergi</au><au>Heinrich, Victoria J.</au><au>Hubert, Guillaume</au><au>Joos, Hanna</au><au>Kim, Seong-Joong</au><au>King, John C.</au><au>Kittel, Christoph</au><au>Landais, Amaelle</au><au>Lazzara, Matthew</au><au>Leonard, Gregory H.</au><au>Lieser, Jan L.</au><au>Maclennan, Michelle</au><au>Mikolajczyk, David</au><au>Neff, Peter</au><au>Ollivier, Inès</au><au>Picard, Ghislain</au><au>Pohl, Benjamin</au><au>Ralph, F. Martin</au><au>Rowe, Penny</au><au>Schlosser, Elisabeth</au><au>Shields, Christine A.</au><au>Smith, Inga J.</au><au>Sprenger, Michael</au><au>Trusel, Luke</au><au>Udy, Danielle</au><au>Vance, Tessa</au><au>Vignon, Étienne</au><au>Walker, Catherine</au><au>Wever, Nander</au><au>Zou, Xun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet</atitle><jtitle>Journal of climate</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>37</volume><issue>3</issue><spage>779</spage><epage>799</epage><pages>779-799</pages><issn>0894-8755</issn><issn>1520-0442</issn><eissn>1520-0442</eissn><abstract>Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent.</abstract><cop>United States</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-23-0176.1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3918-5204</orcidid><orcidid>https://orcid.org/0000-0003-1475-5853</orcidid><orcidid>https://orcid.org/0000-0002-8185-415X</orcidid><orcidid>https://orcid.org/0000-0003-3801-9367</orcidid><orcidid>https://orcid.org/0000-0002-9339-797X</orcidid><orcidid>https://orcid.org/0000-0001-8088-8895</orcidid><orcidid>https://orcid.org/0000-0001-6024-9498</orcidid><orcidid>https://orcid.org/0009-0002-0479-2116</orcidid><orcidid>https://orcid.org/0000-0001-7038-6189</orcidid><orcidid>https://orcid.org/0000000239185204</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2024-02, Vol.37 (3), p.779-799
issn 0894-8755
1520-0442
1520-0442
language eng
recordid cdi_osti_scitechconnect_2280447
source American Meteorological Society
subjects Atmospheric Science
Climatology
Earth Sciences
Earth sciences & physical geography
Glaciology
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
Sciences de la terre & géographie physique
Sciences of the Universe
title The Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Extraordinary%20March%202022%20East%20Antarctica%20%E2%80%9CHeat%E2%80%9D%20Wave.%20Part%20II:%20Impacts%20on%20the%20Antarctic%20Ice%20Sheet&rft.jtitle=Journal%20of%20climate&rft.au=Wille,%20Jonathan%20D.&rft.date=2024-02-01&rft.volume=37&rft.issue=3&rft.spage=779&rft.epage=799&rft.pages=779-799&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-23-0176.1&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_04289361v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true