A One–parameter Family of Bounded Solutions for a System of Nonlinear Integral Equations on the Whole Line
A system of nonlinear integral equations with a convolution type operator arising in the p –adic string theory for the scalar tachyons field is studied. The existence of a one–parameter family of monotone continuous and bounded solutions for this system is proved. The limits of the constructed solut...
Gespeichert in:
Veröffentlicht in: | Journal of contemporary mathematical analysis 2018-07, Vol.53 (4), p.201-211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 4 |
container_start_page | 201 |
container_title | Journal of contemporary mathematical analysis |
container_volume | 53 |
creator | Khachatryan, Kh. A. Terjyan, Ts. E. Avetisyan, M. H. |
description | A system of nonlinear integral equations with a convolution type operator arising in the
p
–adic string theory for the scalar tachyons field is studied. The existence of a one–parameter family of monotone continuous and bounded solutions for this system is proved. The limits of the constructed solutions at ±∞ are calculated. |
doi_str_mv | 10.3103/S1068362318040027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22795619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092892455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-76fc076658ee788428f034f234435365138193aec5a938b420c6e56c6f8936213</originalsourceid><addsrcrecordid>eNp1kM1OAjEUhSdGExF9AHdNXI_2fzpLJKAkRBZoXE5quQNDhhbazoKd7-Ab-iSWYHRhXN2b3O-cnHOz7JrgW0Ywu5sTLBWTlBGFOca0OMl6pGQ8LzmRp2lP5_xwP88uQlhjLNLOe1k7QDMLn-8fW-31BiJ4NNabpt0jV6N719kFLNDctV1snA2odh5pNN-HCJsD8eRs21jQHk1shKXXLRrtOn2EnUVxBeh15VpA04RdZme1bgNcfc9-9jIePQ8f8-nsYTIcTHPDOI95IWuDCymFAiiU4lTVmPE65eVMMCkIU6maBiN0ydQbp9hIENLIWpWpImH97Obo60JsqmCaCGZlnLVgYkVpUQqZDH6orXe7DkKs1q7zNgWrKC6pKikXIlHkSBnvQvBQV1vfbLTfVwRXh9dXf16fNPSoCYm1S_C_zv-LvgDsdIOT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092892455</pqid></control><display><type>article</type><title>A One–parameter Family of Bounded Solutions for a System of Nonlinear Integral Equations on the Whole Line</title><source>SpringerLink Journals - AutoHoldings</source><creator>Khachatryan, Kh. A. ; Terjyan, Ts. E. ; Avetisyan, M. H.</creator><creatorcontrib>Khachatryan, Kh. A. ; Terjyan, Ts. E. ; Avetisyan, M. H.</creatorcontrib><description>A system of nonlinear integral equations with a convolution type operator arising in the
p
–adic string theory for the scalar tachyons field is studied. The existence of a one–parameter family of monotone continuous and bounded solutions for this system is proved. The limits of the constructed solutions at ±∞ are calculated.</description><identifier>ISSN: 1068-3623</identifier><identifier>ISSN: 1934-9416</identifier><identifier>EISSN: 1934-9416</identifier><identifier>DOI: 10.3103/S1068362318040027</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Convolution ; INTEGRAL EQUATIONS ; Mathematical analysis ; MATHEMATICAL SOLUTIONS ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; NONLINEAR PROBLEMS ; Operators (mathematics) ; Parameters ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; STRING THEORY ; TACHYONS</subject><ispartof>Journal of contemporary mathematical analysis, 2018-07, Vol.53 (4), p.201-211</ispartof><rights>Allerton Press, Inc. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-76fc076658ee788428f034f234435365138193aec5a938b420c6e56c6f8936213</citedby><cites>FETCH-LOGICAL-c344t-76fc076658ee788428f034f234435365138193aec5a938b420c6e56c6f8936213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068362318040027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068362318040027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22795619$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khachatryan, Kh. A.</creatorcontrib><creatorcontrib>Terjyan, Ts. E.</creatorcontrib><creatorcontrib>Avetisyan, M. H.</creatorcontrib><title>A One–parameter Family of Bounded Solutions for a System of Nonlinear Integral Equations on the Whole Line</title><title>Journal of contemporary mathematical analysis</title><addtitle>J. Contemp. Mathemat. Anal</addtitle><description>A system of nonlinear integral equations with a convolution type operator arising in the
p
–adic string theory for the scalar tachyons field is studied. The existence of a one–parameter family of monotone continuous and bounded solutions for this system is proved. The limits of the constructed solutions at ±∞ are calculated.</description><subject>Convolution</subject><subject>INTEGRAL EQUATIONS</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>NONLINEAR PROBLEMS</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>STRING THEORY</subject><subject>TACHYONS</subject><issn>1068-3623</issn><issn>1934-9416</issn><issn>1934-9416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAjEUhSdGExF9AHdNXI_2fzpLJKAkRBZoXE5quQNDhhbazoKd7-Ab-iSWYHRhXN2b3O-cnHOz7JrgW0Ywu5sTLBWTlBGFOca0OMl6pGQ8LzmRp2lP5_xwP88uQlhjLNLOe1k7QDMLn-8fW-31BiJ4NNabpt0jV6N719kFLNDctV1snA2odh5pNN-HCJsD8eRs21jQHk1shKXXLRrtOn2EnUVxBeh15VpA04RdZme1bgNcfc9-9jIePQ8f8-nsYTIcTHPDOI95IWuDCymFAiiU4lTVmPE65eVMMCkIU6maBiN0ydQbp9hIENLIWpWpImH97Obo60JsqmCaCGZlnLVgYkVpUQqZDH6orXe7DkKs1q7zNgWrKC6pKikXIlHkSBnvQvBQV1vfbLTfVwRXh9dXf16fNPSoCYm1S_C_zv-LvgDsdIOT</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Khachatryan, Kh. A.</creator><creator>Terjyan, Ts. E.</creator><creator>Avetisyan, M. H.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180701</creationdate><title>A One–parameter Family of Bounded Solutions for a System of Nonlinear Integral Equations on the Whole Line</title><author>Khachatryan, Kh. A. ; Terjyan, Ts. E. ; Avetisyan, M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-76fc076658ee788428f034f234435365138193aec5a938b420c6e56c6f8936213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convolution</topic><topic>INTEGRAL EQUATIONS</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>NONLINEAR PROBLEMS</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>STRING THEORY</topic><topic>TACHYONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khachatryan, Kh. A.</creatorcontrib><creatorcontrib>Terjyan, Ts. E.</creatorcontrib><creatorcontrib>Avetisyan, M. H.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of contemporary mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khachatryan, Kh. A.</au><au>Terjyan, Ts. E.</au><au>Avetisyan, M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A One–parameter Family of Bounded Solutions for a System of Nonlinear Integral Equations on the Whole Line</atitle><jtitle>Journal of contemporary mathematical analysis</jtitle><stitle>J. Contemp. Mathemat. Anal</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>53</volume><issue>4</issue><spage>201</spage><epage>211</epage><pages>201-211</pages><issn>1068-3623</issn><issn>1934-9416</issn><eissn>1934-9416</eissn><abstract>A system of nonlinear integral equations with a convolution type operator arising in the
p
–adic string theory for the scalar tachyons field is studied. The existence of a one–parameter family of monotone continuous and bounded solutions for this system is proved. The limits of the constructed solutions at ±∞ are calculated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068362318040027</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-3623 |
ispartof | Journal of contemporary mathematical analysis, 2018-07, Vol.53 (4), p.201-211 |
issn | 1068-3623 1934-9416 1934-9416 |
language | eng |
recordid | cdi_osti_scitechconnect_22795619 |
source | SpringerLink Journals - AutoHoldings |
subjects | Convolution INTEGRAL EQUATIONS Mathematical analysis MATHEMATICAL SOLUTIONS Mathematics Mathematics and Statistics Nonlinear equations NONLINEAR PROBLEMS Operators (mathematics) Parameters PHYSICS OF ELEMENTARY PARTICLES AND FIELDS STRING THEORY TACHYONS |
title | A One–parameter Family of Bounded Solutions for a System of Nonlinear Integral Equations on the Whole Line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20One%E2%80%93parameter%20Family%20of%20Bounded%20Solutions%20for%20a%20System%20of%20Nonlinear%20Integral%20Equations%20on%20the%20Whole%20Line&rft.jtitle=Journal%20of%20contemporary%20mathematical%20analysis&rft.au=Khachatryan,%20Kh.%20A.&rft.date=2018-07-01&rft.volume=53&rft.issue=4&rft.spage=201&rft.epage=211&rft.pages=201-211&rft.issn=1068-3623&rft.eissn=1934-9416&rft_id=info:doi/10.3103/S1068362318040027&rft_dat=%3Cproquest_osti_%3E2092892455%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092892455&rft_id=info:pmid/&rfr_iscdi=true |