Development of Chitosan Membranes as a Potential PEMFC Electrolyte
Commercial chitosan and chitosan extracted from shrimp shells are being used to design membranes to be tested as low cost electrolyte in PEM fuel cells. This study investigated the influence of the deacetylation degree (DD) and molar mass ( M V ) of the chitosans used in the composition of membranes...
Gespeichert in:
Veröffentlicht in: | Journal of polymers and the environment 2018-07, Vol.26 (7), p.2964-2972 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2972 |
---|---|
container_issue | 7 |
container_start_page | 2964 |
container_title | Journal of polymers and the environment |
container_volume | 26 |
creator | Lupatini, Karine N. Schaffer, Jéssica V. Machado, Bruna Silva, Eliane S. Ellendersen, Luciana S. N. Muniz, Graciela I. B. Ferracin, Ricardo J. Alves, Helton J. |
description | Commercial chitosan and chitosan extracted from shrimp shells are being used to design membranes to be tested as low cost electrolyte in PEM fuel cells. This study investigated the influence of the deacetylation degree (DD) and molar mass (
M
V
) of the chitosans used in the composition of membranes on its performance regarding to proton conductivity and other properties. Preliminary results indicate that the chitosan extracted from shrimp shells generated membranes with promising properties such as proton conductivity, which demonstrated to be even a 100 times higher than those shown by commercial chitosan membranes. The significant increase in proton conductivity can be associated with the higher number and availability of amino groups (–NH
2
) in the chitosan produced in the laboratory, which presents higher DD and lower
M
V
. It is believed that the properties of chitosan can be manipulated in such a way that it would be possible to obtain proton conductivity values closer to that presented by Nafion
®
. |
doi_str_mv | 10.1007/s10924-017-1146-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22788095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993455642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-410c72813ef91bd09d79938a93c157642a46710d474fb3c5769b351b6700027f3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC52gmyW42R123KrTYg55DNs3aLdtNTVKh_96UFfQiDMwwfG_m8RC6BnILhIi7AERSjgkIDMALLE7QBHJBcSlBnh7nosA05-wcXYSwIYTIpJugh0f7ZXu329ohZq7NqnUXXdBDtrDbxuvBhkynypYuJqLTfbasF7Mqq3tronf9IdpLdNbqPtirnz5F77P6rXrG89enl-p-jg0rIWIOxAhaArOthGZF5EpIyUotmUlGC041LwSQFRe8bZhJK9mwHJpCJLNUtGyKbsa7LsROBdNFa9bGDUNyoigVZUlk_kvtvPvc2xDVxu39kIwpSP94nqdXiYKRMt6F4G2rdr7ban9QQNQxUDUGqlKg6hioEklDR01I7PBh_Z_L_4q-AadsdMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993455642</pqid></control><display><type>article</type><title>Development of Chitosan Membranes as a Potential PEMFC Electrolyte</title><source>SpringerLink Journals</source><creator>Lupatini, Karine N. ; Schaffer, Jéssica V. ; Machado, Bruna ; Silva, Eliane S. ; Ellendersen, Luciana S. N. ; Muniz, Graciela I. B. ; Ferracin, Ricardo J. ; Alves, Helton J.</creator><creatorcontrib>Lupatini, Karine N. ; Schaffer, Jéssica V. ; Machado, Bruna ; Silva, Eliane S. ; Ellendersen, Luciana S. N. ; Muniz, Graciela I. B. ; Ferracin, Ricardo J. ; Alves, Helton J.</creatorcontrib><description>Commercial chitosan and chitosan extracted from shrimp shells are being used to design membranes to be tested as low cost electrolyte in PEM fuel cells. This study investigated the influence of the deacetylation degree (DD) and molar mass (
M
V
) of the chitosans used in the composition of membranes on its performance regarding to proton conductivity and other properties. Preliminary results indicate that the chitosan extracted from shrimp shells generated membranes with promising properties such as proton conductivity, which demonstrated to be even a 100 times higher than those shown by commercial chitosan membranes. The significant increase in proton conductivity can be associated with the higher number and availability of amino groups (–NH
2
) in the chitosan produced in the laboratory, which presents higher DD and lower
M
V
. It is believed that the properties of chitosan can be manipulated in such a way that it would be possible to obtain proton conductivity values closer to that presented by Nafion
®
.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-017-1146-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>30 DIRECT ENERGY CONVERSION ; AMINO ACIDS ; Amino groups ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Conductivity ; Deacetylation ; ELECTROLYTES ; Electrolytic cells ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Industrial Chemistry/Chemical Engineering ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Materials Science ; MEMBRANES ; OLIGOSACCHARIDES ; Original Paper ; Polymer Sciences ; Properties (attributes) ; PROTON CONDUCTIVITY ; PROTON EXCHANGE MEMBRANE FUEL CELLS ; Protons ; RENEWABLE ENERGY SOURCES ; SHELLS ; SHRIMP</subject><ispartof>Journal of polymers and the environment, 2018-07, Vol.26 (7), p.2964-2972</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Polymers and the Environment is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-410c72813ef91bd09d79938a93c157642a46710d474fb3c5769b351b6700027f3</citedby><cites>FETCH-LOGICAL-c381t-410c72813ef91bd09d79938a93c157642a46710d474fb3c5769b351b6700027f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10924-017-1146-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10924-017-1146-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22788095$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lupatini, Karine N.</creatorcontrib><creatorcontrib>Schaffer, Jéssica V.</creatorcontrib><creatorcontrib>Machado, Bruna</creatorcontrib><creatorcontrib>Silva, Eliane S.</creatorcontrib><creatorcontrib>Ellendersen, Luciana S. N.</creatorcontrib><creatorcontrib>Muniz, Graciela I. B.</creatorcontrib><creatorcontrib>Ferracin, Ricardo J.</creatorcontrib><creatorcontrib>Alves, Helton J.</creatorcontrib><title>Development of Chitosan Membranes as a Potential PEMFC Electrolyte</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><description>Commercial chitosan and chitosan extracted from shrimp shells are being used to design membranes to be tested as low cost electrolyte in PEM fuel cells. This study investigated the influence of the deacetylation degree (DD) and molar mass (
M
V
) of the chitosans used in the composition of membranes on its performance regarding to proton conductivity and other properties. Preliminary results indicate that the chitosan extracted from shrimp shells generated membranes with promising properties such as proton conductivity, which demonstrated to be even a 100 times higher than those shown by commercial chitosan membranes. The significant increase in proton conductivity can be associated with the higher number and availability of amino groups (–NH
2
) in the chitosan produced in the laboratory, which presents higher DD and lower
M
V
. It is believed that the properties of chitosan can be manipulated in such a way that it would be possible to obtain proton conductivity values closer to that presented by Nafion
®
.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>AMINO ACIDS</subject><subject>Amino groups</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Conductivity</subject><subject>Deacetylation</subject><subject>ELECTROLYTES</subject><subject>Electrolytic cells</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Materials Science</subject><subject>MEMBRANES</subject><subject>OLIGOSACCHARIDES</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Properties (attributes)</subject><subject>PROTON CONDUCTIVITY</subject><subject>PROTON EXCHANGE MEMBRANE FUEL CELLS</subject><subject>Protons</subject><subject>RENEWABLE ENERGY SOURCES</subject><subject>SHELLS</subject><subject>SHRIMP</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuC52gmyW42R123KrTYg55DNs3aLdtNTVKh_96UFfQiDMwwfG_m8RC6BnILhIi7AERSjgkIDMALLE7QBHJBcSlBnh7nosA05-wcXYSwIYTIpJugh0f7ZXu329ohZq7NqnUXXdBDtrDbxuvBhkynypYuJqLTfbasF7Mqq3tronf9IdpLdNbqPtirnz5F77P6rXrG89enl-p-jg0rIWIOxAhaArOthGZF5EpIyUotmUlGC041LwSQFRe8bZhJK9mwHJpCJLNUtGyKbsa7LsROBdNFa9bGDUNyoigVZUlk_kvtvPvc2xDVxu39kIwpSP94nqdXiYKRMt6F4G2rdr7ban9QQNQxUDUGqlKg6hioEklDR01I7PBh_Z_L_4q-AadsdMY</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Lupatini, Karine N.</creator><creator>Schaffer, Jéssica V.</creator><creator>Machado, Bruna</creator><creator>Silva, Eliane S.</creator><creator>Ellendersen, Luciana S. N.</creator><creator>Muniz, Graciela I. B.</creator><creator>Ferracin, Ricardo J.</creator><creator>Alves, Helton J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20180701</creationdate><title>Development of Chitosan Membranes as a Potential PEMFC Electrolyte</title><author>Lupatini, Karine N. ; Schaffer, Jéssica V. ; Machado, Bruna ; Silva, Eliane S. ; Ellendersen, Luciana S. N. ; Muniz, Graciela I. B. ; Ferracin, Ricardo J. ; Alves, Helton J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-410c72813ef91bd09d79938a93c157642a46710d474fb3c5769b351b6700027f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>AMINO ACIDS</topic><topic>Amino groups</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Conductivity</topic><topic>Deacetylation</topic><topic>ELECTROLYTES</topic><topic>Electrolytic cells</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Materials Science</topic><topic>MEMBRANES</topic><topic>OLIGOSACCHARIDES</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Properties (attributes)</topic><topic>PROTON CONDUCTIVITY</topic><topic>PROTON EXCHANGE MEMBRANE FUEL CELLS</topic><topic>Protons</topic><topic>RENEWABLE ENERGY SOURCES</topic><topic>SHELLS</topic><topic>SHRIMP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lupatini, Karine N.</creatorcontrib><creatorcontrib>Schaffer, Jéssica V.</creatorcontrib><creatorcontrib>Machado, Bruna</creatorcontrib><creatorcontrib>Silva, Eliane S.</creatorcontrib><creatorcontrib>Ellendersen, Luciana S. N.</creatorcontrib><creatorcontrib>Muniz, Graciela I. B.</creatorcontrib><creatorcontrib>Ferracin, Ricardo J.</creatorcontrib><creatorcontrib>Alves, Helton J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lupatini, Karine N.</au><au>Schaffer, Jéssica V.</au><au>Machado, Bruna</au><au>Silva, Eliane S.</au><au>Ellendersen, Luciana S. N.</au><au>Muniz, Graciela I. B.</au><au>Ferracin, Ricardo J.</au><au>Alves, Helton J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Chitosan Membranes as a Potential PEMFC Electrolyte</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>26</volume><issue>7</issue><spage>2964</spage><epage>2972</epage><pages>2964-2972</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>Commercial chitosan and chitosan extracted from shrimp shells are being used to design membranes to be tested as low cost electrolyte in PEM fuel cells. This study investigated the influence of the deacetylation degree (DD) and molar mass (
M
V
) of the chitosans used in the composition of membranes on its performance regarding to proton conductivity and other properties. Preliminary results indicate that the chitosan extracted from shrimp shells generated membranes with promising properties such as proton conductivity, which demonstrated to be even a 100 times higher than those shown by commercial chitosan membranes. The significant increase in proton conductivity can be associated with the higher number and availability of amino groups (–NH
2
) in the chitosan produced in the laboratory, which presents higher DD and lower
M
V
. It is believed that the properties of chitosan can be manipulated in such a way that it would be possible to obtain proton conductivity values closer to that presented by Nafion
®
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-017-1146-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-2543 |
ispartof | Journal of polymers and the environment, 2018-07, Vol.26 (7), p.2964-2972 |
issn | 1566-2543 1572-8919 |
language | eng |
recordid | cdi_osti_scitechconnect_22788095 |
source | SpringerLink Journals |
subjects | 30 DIRECT ENERGY CONVERSION AMINO ACIDS Amino groups Chemistry Chemistry and Materials Science Chitosan Conductivity Deacetylation ELECTROLYTES Electrolytic cells Environmental Chemistry Environmental Engineering/Biotechnology Industrial Chemistry/Chemical Engineering INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Materials Science MEMBRANES OLIGOSACCHARIDES Original Paper Polymer Sciences Properties (attributes) PROTON CONDUCTIVITY PROTON EXCHANGE MEMBRANE FUEL CELLS Protons RENEWABLE ENERGY SOURCES SHELLS SHRIMP |
title | Development of Chitosan Membranes as a Potential PEMFC Electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Chitosan%20Membranes%20as%20a%20Potential%20PEMFC%20Electrolyte&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Lupatini,%20Karine%20N.&rft.date=2018-07-01&rft.volume=26&rft.issue=7&rft.spage=2964&rft.epage=2972&rft.pages=2964-2972&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-017-1146-7&rft_dat=%3Cproquest_osti_%3E1993455642%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993455642&rft_id=info:pmid/&rfr_iscdi=true |