Zero-Temperature Dynamics in the Dilute Curie–Weiss Model

We consider the Ising model on a dense Erdős–Rényi random graph, G ( N , p ) , with p > 0 fixed—equivalently, a disordered Curie–Weiss Ising model with Ber ( p ) couplings—at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2018-08, Vol.172 (4), p.1009-1028
Hauptverfasser: Gheissari, Reza, Newman, Charles M., Stein, Daniel L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1028
container_issue 4
container_start_page 1009
container_title Journal of statistical physics
container_volume 172
creator Gheissari, Reza
Newman, Charles M.
Stein, Daniel L.
description We consider the Ising model on a dense Erdős–Rényi random graph, G ( N , p ) , with p > 0 fixed—equivalently, a disordered Curie–Weiss Ising model with Ber ( p ) couplings—at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G ( N , p ) with p > 0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie–Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states.
doi_str_mv 10.1007/s10955-018-2087-9
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22787981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A547146824</galeid><sourcerecordid>A547146824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-f73e79c774e741fbba6cca325b5b8421fab7adff4a729804ec66aa029c6cb9283</originalsourceid><addsrcrecordid>eNp1kMtOAyEUQInRxFr9AHeTuKYC8wDiqqnPpMZNjYkbwtBLS9MOFZiFO__BP_RLxIyJK8OCQM4hl4PQOSUTSgi_jJTIusaECsyI4FgeoBGtOcOyoeUhGhHCGK44rY_RSYwbQogUsh6hq1cIHi9gt4egUx-guH7v9M6ZWLiuSOt8dts-QTHrg4Ovj88XcDEWj34J21N0ZPU2wtnvPkbPtzeL2T2eP909zKZzbEpRJmx5CVwazivgFbVtqxtjdMnqtm5FxajVLddLayvNmRSkAtM0WhMmTWNayUQ5RhfDuz4mp6JxCcza-K4DkxRjXHAp6B-1D_6th5jUxvehy4MpRjjjTSabTE0GaqW3oFxnfQra5LWE_GnfgXX5flrnVFUjWJUFOggm-BgDWLUPbqfDu6JE_aRXQ3qV06uf9Epmhw1OzGy3gvA3yv_SN_UWhas</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072762276</pqid></control><display><type>article</type><title>Zero-Temperature Dynamics in the Dilute Curie–Weiss Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gheissari, Reza ; Newman, Charles M. ; Stein, Daniel L.</creator><creatorcontrib>Gheissari, Reza ; Newman, Charles M. ; Stein, Daniel L.</creatorcontrib><description>We consider the Ising model on a dense Erdős–Rényi random graph, G ( N , p ) , with p &gt; 0 fixed—equivalently, a disordered Curie–Weiss Ising model with Ber ( p ) couplings—at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G ( N , p ) with p &gt; 0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie–Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-018-2087-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONFIGURATION ; Couplings ; Curie temperature ; Dilution ; GRAPH THEORY ; GROUND STATES ; ISING MODEL ; LIMITING VALUES ; Mathematical and Computational Physics ; Minima ; PARTITION ; Physical Chemistry ; Physics ; Physics and Astronomy ; PROBABILITY ; Quantum Physics ; RANDOMNESS ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2018-08, Vol.172 (4), p.1009-1028</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-f73e79c774e741fbba6cca325b5b8421fab7adff4a729804ec66aa029c6cb9283</citedby><cites>FETCH-LOGICAL-c383t-f73e79c774e741fbba6cca325b5b8421fab7adff4a729804ec66aa029c6cb9283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-018-2087-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-018-2087-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22787981$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gheissari, Reza</creatorcontrib><creatorcontrib>Newman, Charles M.</creatorcontrib><creatorcontrib>Stein, Daniel L.</creatorcontrib><title>Zero-Temperature Dynamics in the Dilute Curie–Weiss Model</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We consider the Ising model on a dense Erdős–Rényi random graph, G ( N , p ) , with p &gt; 0 fixed—equivalently, a disordered Curie–Weiss Ising model with Ber ( p ) couplings—at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G ( N , p ) with p &gt; 0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie–Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONFIGURATION</subject><subject>Couplings</subject><subject>Curie temperature</subject><subject>Dilution</subject><subject>GRAPH THEORY</subject><subject>GROUND STATES</subject><subject>ISING MODEL</subject><subject>LIMITING VALUES</subject><subject>Mathematical and Computational Physics</subject><subject>Minima</subject><subject>PARTITION</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PROBABILITY</subject><subject>Quantum Physics</subject><subject>RANDOMNESS</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAyEUQInRxFr9AHeTuKYC8wDiqqnPpMZNjYkbwtBLS9MOFZiFO__BP_RLxIyJK8OCQM4hl4PQOSUTSgi_jJTIusaECsyI4FgeoBGtOcOyoeUhGhHCGK44rY_RSYwbQogUsh6hq1cIHi9gt4egUx-guH7v9M6ZWLiuSOt8dts-QTHrg4Ovj88XcDEWj34J21N0ZPU2wtnvPkbPtzeL2T2eP909zKZzbEpRJmx5CVwazivgFbVtqxtjdMnqtm5FxajVLddLayvNmRSkAtM0WhMmTWNayUQ5RhfDuz4mp6JxCcza-K4DkxRjXHAp6B-1D_6th5jUxvehy4MpRjjjTSabTE0GaqW3oFxnfQra5LWE_GnfgXX5flrnVFUjWJUFOggm-BgDWLUPbqfDu6JE_aRXQ3qV06uf9Epmhw1OzGy3gvA3yv_SN_UWhas</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Gheissari, Reza</creator><creator>Newman, Charles M.</creator><creator>Stein, Daniel L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180801</creationdate><title>Zero-Temperature Dynamics in the Dilute Curie–Weiss Model</title><author>Gheissari, Reza ; Newman, Charles M. ; Stein, Daniel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-f73e79c774e741fbba6cca325b5b8421fab7adff4a729804ec66aa029c6cb9283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONFIGURATION</topic><topic>Couplings</topic><topic>Curie temperature</topic><topic>Dilution</topic><topic>GRAPH THEORY</topic><topic>GROUND STATES</topic><topic>ISING MODEL</topic><topic>LIMITING VALUES</topic><topic>Mathematical and Computational Physics</topic><topic>Minima</topic><topic>PARTITION</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PROBABILITY</topic><topic>Quantum Physics</topic><topic>RANDOMNESS</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gheissari, Reza</creatorcontrib><creatorcontrib>Newman, Charles M.</creatorcontrib><creatorcontrib>Stein, Daniel L.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gheissari, Reza</au><au>Newman, Charles M.</au><au>Stein, Daniel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Temperature Dynamics in the Dilute Curie–Weiss Model</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>172</volume><issue>4</issue><spage>1009</spage><epage>1028</epage><pages>1009-1028</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We consider the Ising model on a dense Erdős–Rényi random graph, G ( N , p ) , with p &gt; 0 fixed—equivalently, a disordered Curie–Weiss Ising model with Ber ( p ) couplings—at zero temperature. The disorder may induce local energy minima in addition to the two uniform ground states. In this paper we prove that, starting from a typical initial configuration, the zero-temperature dynamics avoids all such local minima and absorbs into a predetermined one of the two uniform ground states. We relate this to the local MINCUT problem on dense random graphs; namely with high probability, the greedy search for a local MINCUT of G ( N , p ) with p &gt; 0 fixed, started from a uniform random partition, fails to find a non-trivial cut. In contrast, in the disordered Curie–Weiss model with heavy-tailed couplings, we demonstrate that zero-temperature dynamics has positive probability of absorbing in a random local minimum different from the two homogenous ground states.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-018-2087-9</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2018-08, Vol.172 (4), p.1009-1028
issn 0022-4715
1572-9613
language eng
recordid cdi_osti_scitechconnect_22787981
source SpringerLink Journals - AutoHoldings
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONFIGURATION
Couplings
Curie temperature
Dilution
GRAPH THEORY
GROUND STATES
ISING MODEL
LIMITING VALUES
Mathematical and Computational Physics
Minima
PARTITION
Physical Chemistry
Physics
Physics and Astronomy
PROBABILITY
Quantum Physics
RANDOMNESS
Statistical Physics and Dynamical Systems
Theoretical
title Zero-Temperature Dynamics in the Dilute Curie–Weiss Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Temperature%20Dynamics%20in%20the%20Dilute%20Curie%E2%80%93Weiss%20Model&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Gheissari,%20Reza&rft.date=2018-08-01&rft.volume=172&rft.issue=4&rft.spage=1009&rft.epage=1028&rft.pages=1009-1028&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-018-2087-9&rft_dat=%3Cgale_osti_%3EA547146824%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072762276&rft_id=info:pmid/&rft_galeid=A547146824&rfr_iscdi=true