Optimal Design of Ozone Bleaching Parameters to Approach Cellulose Nanofibers Extraction from Sugarcane Bagasse Fibers
Cellulose nanofibers (CNFs) were isolated from sugarcane bagasse (SCB) through the combination of bio-refinery, sulfur-free, and totally chlorine free (TCF) chemo-mechanical pretreatments, with a focus on the optimal design of ozone bleaching parameters based on a response surface methodology (RSM)....
Gespeichert in:
Veröffentlicht in: | Journal of polymers and the environment 2018-10, Vol.26 (10), p.4085-4094 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4094 |
---|---|
container_issue | 10 |
container_start_page | 4085 |
container_title | Journal of polymers and the environment |
container_volume | 26 |
creator | Bahrami, Bahador Behzad, Tayebeh Zamani, Akram Heidarian, Pejman Nasri-Nasrabadi, Bijan |
description | Cellulose nanofibers (CNFs) were isolated from sugarcane bagasse (SCB) through the combination of bio-refinery, sulfur-free, and totally chlorine free (TCF) chemo-mechanical pretreatments, with a focus on the optimal design of ozone bleaching parameters based on a response surface methodology (RSM). For this purpose, the most effective parameters in ozone bleaching (temperature, time, and pulp consistency) were set between 40 and 85 °C, 60 and 360 min, and 1–5 wt%, respectively. High-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), Kappa number, and scanning electron microscopy (SEM) were used to chemically and morphologically characterize the SCB fibers. The size distribution and morphology of CNFs were also evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). HPLC analysis revealed that percentage of cellulose increased from 41.5 to 91.39% after chemical pretreatments. FTIR and Kappa number analyses also confirmed the successful isolation of cellulose fibers from the SCB fibers after chemical pretreatments. Furthermore, DLS results showed that the hydrodynamic diameter of the isolated cellulose fibers reduced to 268 nm by dint of ultrasonication. Additionally, TEM images confirmed the isolation of CNFs: the average diameter of cellulose fibers decreased to about 28 nm after mechanical steps and the yield of fibrillation was found to be around 99%. According to the obtained results, the applied chemo-mechanical treatment appears to be promising for green and facile isolation of CNFs. |
doi_str_mv | 10.1007/s10924-018-1277-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22787946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072559267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-9b711a681dde97651b622e07734b20d1562b9eba7d04372334b355bfab408bcf3</originalsourceid><addsrcrecordid>eNp1kcFPwyAYxRujiXP6B3gj8VwFWko5zrmpyeJM1DMBSrsuHVRgRv3rpdZkJ08Qvt97-R4vSS4RvEYQ0huPIMN5ClGZIkxpSo6SCSIUpyVD7Hi4F0WKSZ6dJmfebyGELOomyce6D-1OdOBO-7YxwNZg_W2NBredFmrTmgY8Cyd2OmjnQbBg1vfOxgmY667bd9Zr8CSMrVs5AIvP4IQKrTWgdnYHXvaNcEoMfqIRPsLLX_A8OalF5_XF3zlN3paL1_lDulrfP85nq1RlJQopkxQhUZSoqjSjBUGywFhDSrNcYljFUFgyLQWtYJ5RnMXnjBBZC5nDUqo6myZXo6_1oeVetUGrjbLGaBU4xrSkLC8OVIz2vtc-8K3dOxMX4xhSTAjDBY0UGinlrPdO17x38evcF0eQDyXwsQQeS-BDCZxEDR41PrKm0e7g_L_oB_kYiag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072559267</pqid></control><display><type>article</type><title>Optimal Design of Ozone Bleaching Parameters to Approach Cellulose Nanofibers Extraction from Sugarcane Bagasse Fibers</title><source>Springer Nature - Complete Springer Journals</source><creator>Bahrami, Bahador ; Behzad, Tayebeh ; Zamani, Akram ; Heidarian, Pejman ; Nasri-Nasrabadi, Bijan</creator><creatorcontrib>Bahrami, Bahador ; Behzad, Tayebeh ; Zamani, Akram ; Heidarian, Pejman ; Nasri-Nasrabadi, Bijan</creatorcontrib><description>Cellulose nanofibers (CNFs) were isolated from sugarcane bagasse (SCB) through the combination of bio-refinery, sulfur-free, and totally chlorine free (TCF) chemo-mechanical pretreatments, with a focus on the optimal design of ozone bleaching parameters based on a response surface methodology (RSM). For this purpose, the most effective parameters in ozone bleaching (temperature, time, and pulp consistency) were set between 40 and 85 °C, 60 and 360 min, and 1–5 wt%, respectively. High-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), Kappa number, and scanning electron microscopy (SEM) were used to chemically and morphologically characterize the SCB fibers. The size distribution and morphology of CNFs were also evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). HPLC analysis revealed that percentage of cellulose increased from 41.5 to 91.39% after chemical pretreatments. FTIR and Kappa number analyses also confirmed the successful isolation of cellulose fibers from the SCB fibers after chemical pretreatments. Furthermore, DLS results showed that the hydrodynamic diameter of the isolated cellulose fibers reduced to 268 nm by dint of ultrasonication. Additionally, TEM images confirmed the isolation of CNFs: the average diameter of cellulose fibers decreased to about 28 nm after mechanical steps and the yield of fibrillation was found to be around 99%. According to the obtained results, the applied chemo-mechanical treatment appears to be promising for green and facile isolation of CNFs.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-018-1277-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bagasse ; Biorefineries ; Bleaching ; CARBON FIBERS ; CELLULOSE ; Cellulose fibers ; Chemistry ; Chemistry and Materials Science ; CHLORINE ; Design optimization ; Design parameters ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Fibers ; Fibrillation ; Fourier transforms ; HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ; Industrial Chemistry/Chemical Engineering ; Infrared spectroscopy ; Light scattering ; Liquid chromatography ; Materials Science ; Microscopy ; Morphology ; NANOFIBERS ; NANOSCIENCE AND NANOTECHNOLOGY ; Organic chemistry ; Original Paper ; Ozone ; Photon correlation spectroscopy ; Polymer Sciences ; Pulp ; Refineries ; Response surface methodology ; SCANNING ELECTRON MICROSCOPY ; Size distribution ; SUGAR CANE ; Sugarcane ; Sulfur ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>Journal of polymers and the environment, 2018-10, Vol.26 (10), p.4085-4094</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Polymers and the Environment is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-9b711a681dde97651b622e07734b20d1562b9eba7d04372334b355bfab408bcf3</citedby><cites>FETCH-LOGICAL-c381t-9b711a681dde97651b622e07734b20d1562b9eba7d04372334b355bfab408bcf3</cites><orcidid>0000-0002-6132-3140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10924-018-1277-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10924-018-1277-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22787946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahrami, Bahador</creatorcontrib><creatorcontrib>Behzad, Tayebeh</creatorcontrib><creatorcontrib>Zamani, Akram</creatorcontrib><creatorcontrib>Heidarian, Pejman</creatorcontrib><creatorcontrib>Nasri-Nasrabadi, Bijan</creatorcontrib><title>Optimal Design of Ozone Bleaching Parameters to Approach Cellulose Nanofibers Extraction from Sugarcane Bagasse Fibers</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><description>Cellulose nanofibers (CNFs) were isolated from sugarcane bagasse (SCB) through the combination of bio-refinery, sulfur-free, and totally chlorine free (TCF) chemo-mechanical pretreatments, with a focus on the optimal design of ozone bleaching parameters based on a response surface methodology (RSM). For this purpose, the most effective parameters in ozone bleaching (temperature, time, and pulp consistency) were set between 40 and 85 °C, 60 and 360 min, and 1–5 wt%, respectively. High-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), Kappa number, and scanning electron microscopy (SEM) were used to chemically and morphologically characterize the SCB fibers. The size distribution and morphology of CNFs were also evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). HPLC analysis revealed that percentage of cellulose increased from 41.5 to 91.39% after chemical pretreatments. FTIR and Kappa number analyses also confirmed the successful isolation of cellulose fibers from the SCB fibers after chemical pretreatments. Furthermore, DLS results showed that the hydrodynamic diameter of the isolated cellulose fibers reduced to 268 nm by dint of ultrasonication. Additionally, TEM images confirmed the isolation of CNFs: the average diameter of cellulose fibers decreased to about 28 nm after mechanical steps and the yield of fibrillation was found to be around 99%. According to the obtained results, the applied chemo-mechanical treatment appears to be promising for green and facile isolation of CNFs.</description><subject>Bagasse</subject><subject>Biorefineries</subject><subject>Bleaching</subject><subject>CARBON FIBERS</subject><subject>CELLULOSE</subject><subject>Cellulose fibers</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>CHLORINE</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Fibers</subject><subject>Fibrillation</subject><subject>Fourier transforms</subject><subject>HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared spectroscopy</subject><subject>Light scattering</subject><subject>Liquid chromatography</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>NANOFIBERS</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Ozone</subject><subject>Photon correlation spectroscopy</subject><subject>Polymer Sciences</subject><subject>Pulp</subject><subject>Refineries</subject><subject>Response surface methodology</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>Size distribution</subject><subject>SUGAR CANE</subject><subject>Sugarcane</subject><subject>Sulfur</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFPwyAYxRujiXP6B3gj8VwFWko5zrmpyeJM1DMBSrsuHVRgRv3rpdZkJ08Qvt97-R4vSS4RvEYQ0huPIMN5ClGZIkxpSo6SCSIUpyVD7Hi4F0WKSZ6dJmfebyGELOomyce6D-1OdOBO-7YxwNZg_W2NBredFmrTmgY8Cyd2OmjnQbBg1vfOxgmY667bd9Zr8CSMrVs5AIvP4IQKrTWgdnYHXvaNcEoMfqIRPsLLX_A8OalF5_XF3zlN3paL1_lDulrfP85nq1RlJQopkxQhUZSoqjSjBUGywFhDSrNcYljFUFgyLQWtYJ5RnMXnjBBZC5nDUqo6myZXo6_1oeVetUGrjbLGaBU4xrSkLC8OVIz2vtc-8K3dOxMX4xhSTAjDBY0UGinlrPdO17x38evcF0eQDyXwsQQeS-BDCZxEDR41PrKm0e7g_L_oB_kYiag</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Bahrami, Bahador</creator><creator>Behzad, Tayebeh</creator><creator>Zamani, Akram</creator><creator>Heidarian, Pejman</creator><creator>Nasri-Nasrabadi, Bijan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6132-3140</orcidid></search><sort><creationdate>20181001</creationdate><title>Optimal Design of Ozone Bleaching Parameters to Approach Cellulose Nanofibers Extraction from Sugarcane Bagasse Fibers</title><author>Bahrami, Bahador ; Behzad, Tayebeh ; Zamani, Akram ; Heidarian, Pejman ; Nasri-Nasrabadi, Bijan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-9b711a681dde97651b622e07734b20d1562b9eba7d04372334b355bfab408bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bagasse</topic><topic>Biorefineries</topic><topic>Bleaching</topic><topic>CARBON FIBERS</topic><topic>CELLULOSE</topic><topic>Cellulose fibers</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>CHLORINE</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Fibers</topic><topic>Fibrillation</topic><topic>Fourier transforms</topic><topic>HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared spectroscopy</topic><topic>Light scattering</topic><topic>Liquid chromatography</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>NANOFIBERS</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Ozone</topic><topic>Photon correlation spectroscopy</topic><topic>Polymer Sciences</topic><topic>Pulp</topic><topic>Refineries</topic><topic>Response surface methodology</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>Size distribution</topic><topic>SUGAR CANE</topic><topic>Sugarcane</topic><topic>Sulfur</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahrami, Bahador</creatorcontrib><creatorcontrib>Behzad, Tayebeh</creatorcontrib><creatorcontrib>Zamani, Akram</creatorcontrib><creatorcontrib>Heidarian, Pejman</creatorcontrib><creatorcontrib>Nasri-Nasrabadi, Bijan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahrami, Bahador</au><au>Behzad, Tayebeh</au><au>Zamani, Akram</au><au>Heidarian, Pejman</au><au>Nasri-Nasrabadi, Bijan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Design of Ozone Bleaching Parameters to Approach Cellulose Nanofibers Extraction from Sugarcane Bagasse Fibers</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>26</volume><issue>10</issue><spage>4085</spage><epage>4094</epage><pages>4085-4094</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>Cellulose nanofibers (CNFs) were isolated from sugarcane bagasse (SCB) through the combination of bio-refinery, sulfur-free, and totally chlorine free (TCF) chemo-mechanical pretreatments, with a focus on the optimal design of ozone bleaching parameters based on a response surface methodology (RSM). For this purpose, the most effective parameters in ozone bleaching (temperature, time, and pulp consistency) were set between 40 and 85 °C, 60 and 360 min, and 1–5 wt%, respectively. High-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), Kappa number, and scanning electron microscopy (SEM) were used to chemically and morphologically characterize the SCB fibers. The size distribution and morphology of CNFs were also evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). HPLC analysis revealed that percentage of cellulose increased from 41.5 to 91.39% after chemical pretreatments. FTIR and Kappa number analyses also confirmed the successful isolation of cellulose fibers from the SCB fibers after chemical pretreatments. Furthermore, DLS results showed that the hydrodynamic diameter of the isolated cellulose fibers reduced to 268 nm by dint of ultrasonication. Additionally, TEM images confirmed the isolation of CNFs: the average diameter of cellulose fibers decreased to about 28 nm after mechanical steps and the yield of fibrillation was found to be around 99%. According to the obtained results, the applied chemo-mechanical treatment appears to be promising for green and facile isolation of CNFs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-018-1277-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6132-3140</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-2543 |
ispartof | Journal of polymers and the environment, 2018-10, Vol.26 (10), p.4085-4094 |
issn | 1566-2543 1572-8919 |
language | eng |
recordid | cdi_osti_scitechconnect_22787946 |
source | Springer Nature - Complete Springer Journals |
subjects | Bagasse Biorefineries Bleaching CARBON FIBERS CELLULOSE Cellulose fibers Chemistry Chemistry and Materials Science CHLORINE Design optimization Design parameters Environmental Chemistry Environmental Engineering/Biotechnology Fibers Fibrillation Fourier transforms HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY Industrial Chemistry/Chemical Engineering Infrared spectroscopy Light scattering Liquid chromatography Materials Science Microscopy Morphology NANOFIBERS NANOSCIENCE AND NANOTECHNOLOGY Organic chemistry Original Paper Ozone Photon correlation spectroscopy Polymer Sciences Pulp Refineries Response surface methodology SCANNING ELECTRON MICROSCOPY Size distribution SUGAR CANE Sugarcane Sulfur TRANSMISSION ELECTRON MICROSCOPY |
title | Optimal Design of Ozone Bleaching Parameters to Approach Cellulose Nanofibers Extraction from Sugarcane Bagasse Fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Design%20of%20Ozone%20Bleaching%20Parameters%20to%20Approach%20Cellulose%20Nanofibers%20Extraction%20from%20Sugarcane%20Bagasse%20Fibers&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Bahrami,%20Bahador&rft.date=2018-10-01&rft.volume=26&rft.issue=10&rft.spage=4085&rft.epage=4094&rft.pages=4085-4094&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-018-1277-5&rft_dat=%3Cproquest_osti_%3E2072559267%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072559267&rft_id=info:pmid/&rfr_iscdi=true |