Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law
Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according t...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-01, Vol.228 (2), p.142-161 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | 2 |
container_start_page | 142 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 228 |
creator | Shvaiko, M. Yu |
description | Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according to the elastic law). The material function of plasticity Π used in this theory is determined, for a given function of hardening
F
, either from the tension–compression tests or from the tests with alternating torsion of thin-walled pipes. |
doi_str_mv | 10.1007/s10958-017-3612-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A525709458</galeid><sourcerecordid>A525709458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3980-b331e1c00c211731c473542c721ae1074ce2c742b62f694e7c4086d63166d5e63</originalsourceid><addsrcrecordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89bKKPXWn3aNI0Dbg0NPFZyNrZtcyulEoybg757x1jQ2JwEehjeN6Z0fAWxWdGLxil6jIx2tZNSZkqhWS8pG-KM1YrUTaqrd_inSpeCqGq98WHlNYUNbIRZ8Xz3WhSdpZ8gz7EyWQXPAk9-WkyRGfGRBa-g0jmwXTOD2Q2BtzvHFjYugTkfgohr8hDNGuwOUQHiWwdRmYRTNplWvjxoF0-kbwCcn2oODfbj8W7HmvAp8N5Xiy-Xz9c_Sjnv25ur2bz0oq2oeVSCAbMUmo5Y0owWylRV9wqzgzgzyoL-Kj4UvJethUoW9FGdlIwKbsapDgvvuzzBqysk3UZ7MoG77FnzblSDFO9UI8x_NlAynodNtFjY5q1suaNoqp9oQYzgna-DzkaO7lk9azmtaJtVTdIlSeoATxEgyOE3mH4iL84wePqYHL2pODrkQCZDH_zYDYp6dv738cs27M2hpQi9PoxusnEJ82o3tlH7-2j0T56Zx9NUcP3moSsHyC-GsZ_Rf8AiJLDTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965287079</pqid></control><display><type>article</type><title>Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law</title><source>SpringerLink (Online service)</source><creator>Shvaiko, M. Yu</creator><creatorcontrib>Shvaiko, M. Yu</creatorcontrib><description>Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according to the elastic law). The material function of plasticity Π used in this theory is determined, for a given function of hardening
F
, either from the tension–compression tests or from the tests with alternating torsion of thin-walled pipes.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-017-3612-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ANISOTROPY ; COMPRESSION ; Compression tests ; DEFORMATION ; DYNAMIC LOADS ; HARDENING ; Laws, regulations and rules ; MATERIALS SCIENCE ; Mathematics ; Mathematics and Statistics ; PIPES ; Plastic deformation ; Plastic properties ; PLASTICITY ; SLIP ; STRAINS ; TORSION ; TRAJECTORIES</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2018-01, Vol.228 (2), p.142-161</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3980-b331e1c00c211731c473542c721ae1074ce2c742b62f694e7c4086d63166d5e63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-017-3612-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-017-3612-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771721$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shvaiko, M. Yu</creatorcontrib><title>Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according to the elastic law). The material function of plasticity Π used in this theory is determined, for a given function of hardening
F
, either from the tension–compression tests or from the tests with alternating torsion of thin-walled pipes.</description><subject>ANISOTROPY</subject><subject>COMPRESSION</subject><subject>Compression tests</subject><subject>DEFORMATION</subject><subject>DYNAMIC LOADS</subject><subject>HARDENING</subject><subject>Laws, regulations and rules</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>PIPES</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><subject>PLASTICITY</subject><subject>SLIP</subject><subject>STRAINS</subject><subject>TORSION</subject><subject>TRAJECTORIES</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89bKKPXWn3aNI0Dbg0NPFZyNrZtcyulEoybg757x1jQ2JwEehjeN6Z0fAWxWdGLxil6jIx2tZNSZkqhWS8pG-KM1YrUTaqrd_inSpeCqGq98WHlNYUNbIRZ8Xz3WhSdpZ8gz7EyWQXPAk9-WkyRGfGRBa-g0jmwXTOD2Q2BtzvHFjYugTkfgohr8hDNGuwOUQHiWwdRmYRTNplWvjxoF0-kbwCcn2oODfbj8W7HmvAp8N5Xiy-Xz9c_Sjnv25ur2bz0oq2oeVSCAbMUmo5Y0owWylRV9wqzgzgzyoL-Kj4UvJethUoW9FGdlIwKbsapDgvvuzzBqysk3UZ7MoG77FnzblSDFO9UI8x_NlAynodNtFjY5q1suaNoqp9oQYzgna-DzkaO7lk9azmtaJtVTdIlSeoATxEgyOE3mH4iL84wePqYHL2pODrkQCZDH_zYDYp6dv738cs27M2hpQi9PoxusnEJ82o3tlH7-2j0T56Zx9NUcP3moSsHyC-GsZ_Rf8AiJLDTQ</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Shvaiko, M. Yu</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180102</creationdate><title>Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law</title><author>Shvaiko, M. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3980-b331e1c00c211731c473542c721ae1074ce2c742b62f694e7c4086d63166d5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ANISOTROPY</topic><topic>COMPRESSION</topic><topic>Compression tests</topic><topic>DEFORMATION</topic><topic>DYNAMIC LOADS</topic><topic>HARDENING</topic><topic>Laws, regulations and rules</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>PIPES</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><topic>PLASTICITY</topic><topic>SLIP</topic><topic>STRAINS</topic><topic>TORSION</topic><topic>TRAJECTORIES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shvaiko, M. Yu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shvaiko, M. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2018-01-02</date><risdate>2018</risdate><volume>228</volume><issue>2</issue><spage>142</spage><epage>161</epage><pages>142-161</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according to the elastic law). The material function of plasticity Π used in this theory is determined, for a given function of hardening
F
, either from the tension–compression tests or from the tests with alternating torsion of thin-walled pipes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-017-3612-0</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2018-01, Vol.228 (2), p.142-161 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_osti_scitechconnect_22771721 |
source | SpringerLink (Online service) |
subjects | ANISOTROPY COMPRESSION Compression tests DEFORMATION DYNAMIC LOADS HARDENING Laws, regulations and rules MATERIALS SCIENCE Mathematics Mathematics and Statistics PIPES Plastic deformation Plastic properties PLASTICITY SLIP STRAINS TORSION TRAJECTORIES |
title | Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic%20Deformation%20of%20Materials%20Under%20Loading%20Along%20Piecewise%20Smooth%20Trajectories%20with%20Areas%20of%20Unloading%20by%20the%20Elastic%20Law&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Shvaiko,%20M.%20Yu&rft.date=2018-01-02&rft.volume=228&rft.issue=2&rft.spage=142&rft.epage=161&rft.pages=142-161&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-017-3612-0&rft_dat=%3Cgale_osti_%3EA525709458%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965287079&rft_id=info:pmid/&rft_galeid=A525709458&rfr_iscdi=true |