Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law

Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-01, Vol.228 (2), p.142-161
1. Verfasser: Shvaiko, M. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 2
container_start_page 142
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 228
creator Shvaiko, M. Yu
description Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according to the elastic law). The material function of plasticity Π used in this theory is determined, for a given function of hardening F , either from the tension–compression tests or from the tests with alternating torsion of thin-walled pipes.
doi_str_mv 10.1007/s10958-017-3612-0
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A525709458</galeid><sourcerecordid>A525709458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3980-b331e1c00c211731c473542c721ae1074ce2c742b62f694e7c4086d63166d5e63</originalsourceid><addsrcrecordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89bKKPXWn3aNI0Dbg0NPFZyNrZtcyulEoybg757x1jQ2JwEehjeN6Z0fAWxWdGLxil6jIx2tZNSZkqhWS8pG-KM1YrUTaqrd_inSpeCqGq98WHlNYUNbIRZ8Xz3WhSdpZ8gz7EyWQXPAk9-WkyRGfGRBa-g0jmwXTOD2Q2BtzvHFjYugTkfgohr8hDNGuwOUQHiWwdRmYRTNplWvjxoF0-kbwCcn2oODfbj8W7HmvAp8N5Xiy-Xz9c_Sjnv25ur2bz0oq2oeVSCAbMUmo5Y0owWylRV9wqzgzgzyoL-Kj4UvJethUoW9FGdlIwKbsapDgvvuzzBqysk3UZ7MoG77FnzblSDFO9UI8x_NlAynodNtFjY5q1suaNoqp9oQYzgna-DzkaO7lk9azmtaJtVTdIlSeoATxEgyOE3mH4iL84wePqYHL2pODrkQCZDH_zYDYp6dv738cs27M2hpQi9PoxusnEJ82o3tlH7-2j0T56Zx9NUcP3moSsHyC-GsZ_Rf8AiJLDTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965287079</pqid></control><display><type>article</type><title>Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law</title><source>SpringerLink (Online service)</source><creator>Shvaiko, M. Yu</creator><creatorcontrib>Shvaiko, M. Yu</creatorcontrib><description>Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according to the elastic law). The material function of plasticity Π used in this theory is determined, for a given function of hardening F , either from the tension–compression tests or from the tests with alternating torsion of thin-walled pipes.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-017-3612-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ANISOTROPY ; COMPRESSION ; Compression tests ; DEFORMATION ; DYNAMIC LOADS ; HARDENING ; Laws, regulations and rules ; MATERIALS SCIENCE ; Mathematics ; Mathematics and Statistics ; PIPES ; Plastic deformation ; Plastic properties ; PLASTICITY ; SLIP ; STRAINS ; TORSION ; TRAJECTORIES</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2018-01, Vol.228 (2), p.142-161</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3980-b331e1c00c211731c473542c721ae1074ce2c742b62f694e7c4086d63166d5e63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-017-3612-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-017-3612-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771721$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shvaiko, M. Yu</creatorcontrib><title>Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according to the elastic law). The material function of plasticity Π used in this theory is determined, for a given function of hardening F , either from the tension–compression tests or from the tests with alternating torsion of thin-walled pipes.</description><subject>ANISOTROPY</subject><subject>COMPRESSION</subject><subject>Compression tests</subject><subject>DEFORMATION</subject><subject>DYNAMIC LOADS</subject><subject>HARDENING</subject><subject>Laws, regulations and rules</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>PIPES</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><subject>PLASTICITY</subject><subject>SLIP</subject><subject>STRAINS</subject><subject>TORSION</subject><subject>TRAJECTORIES</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89bKKPXWn3aNI0Dbg0NPFZyNrZtcyulEoybg757x1jQ2JwEehjeN6Z0fAWxWdGLxil6jIx2tZNSZkqhWS8pG-KM1YrUTaqrd_inSpeCqGq98WHlNYUNbIRZ8Xz3WhSdpZ8gz7EyWQXPAk9-WkyRGfGRBa-g0jmwXTOD2Q2BtzvHFjYugTkfgohr8hDNGuwOUQHiWwdRmYRTNplWvjxoF0-kbwCcn2oODfbj8W7HmvAp8N5Xiy-Xz9c_Sjnv25ur2bz0oq2oeVSCAbMUmo5Y0owWylRV9wqzgzgzyoL-Kj4UvJethUoW9FGdlIwKbsapDgvvuzzBqysk3UZ7MoG77FnzblSDFO9UI8x_NlAynodNtFjY5q1suaNoqp9oQYzgna-DzkaO7lk9azmtaJtVTdIlSeoATxEgyOE3mH4iL84wePqYHL2pODrkQCZDH_zYDYp6dv738cs27M2hpQi9PoxusnEJ82o3tlH7-2j0T56Zx9NUcP3moSsHyC-GsZ_Rf8AiJLDTQ</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Shvaiko, M. Yu</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180102</creationdate><title>Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law</title><author>Shvaiko, M. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3980-b331e1c00c211731c473542c721ae1074ce2c742b62f694e7c4086d63166d5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ANISOTROPY</topic><topic>COMPRESSION</topic><topic>Compression tests</topic><topic>DEFORMATION</topic><topic>DYNAMIC LOADS</topic><topic>HARDENING</topic><topic>Laws, regulations and rules</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>PIPES</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><topic>PLASTICITY</topic><topic>SLIP</topic><topic>STRAINS</topic><topic>TORSION</topic><topic>TRAJECTORIES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shvaiko, M. Yu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shvaiko, M. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2018-01-02</date><risdate>2018</risdate><volume>228</volume><issue>2</issue><spage>142</spage><epage>161</epage><pages>142-161</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Within the framework of a version of plasticity theory based on the concept of slip, we propose a method for the determination of plastic strains in materials with regard for the strain anisotropy in the case of loading applied along piecewise smooth trajectories (with areas of unloading according to the elastic law). The material function of plasticity Π used in this theory is determined, for a given function of hardening F , either from the tension–compression tests or from the tests with alternating torsion of thin-walled pipes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-017-3612-0</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2018-01, Vol.228 (2), p.142-161
issn 1072-3374
1573-8795
language eng
recordid cdi_osti_scitechconnect_22771721
source SpringerLink (Online service)
subjects ANISOTROPY
COMPRESSION
Compression tests
DEFORMATION
DYNAMIC LOADS
HARDENING
Laws, regulations and rules
MATERIALS SCIENCE
Mathematics
Mathematics and Statistics
PIPES
Plastic deformation
Plastic properties
PLASTICITY
SLIP
STRAINS
TORSION
TRAJECTORIES
title Plastic Deformation of Materials Under Loading Along Piecewise Smooth Trajectories with Areas of Unloading by the Elastic Law
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic%20Deformation%20of%20Materials%20Under%20Loading%20Along%20Piecewise%20Smooth%20Trajectories%20with%20Areas%20of%20Unloading%20by%20the%20Elastic%20Law&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Shvaiko,%20M.%20Yu&rft.date=2018-01-02&rft.volume=228&rft.issue=2&rft.spage=142&rft.epage=161&rft.pages=142-161&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-017-3612-0&rft_dat=%3Cgale_osti_%3EA525709458%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965287079&rft_id=info:pmid/&rft_galeid=A525709458&rfr_iscdi=true