Viscoelasticity and plasticity mechanisms of human dentin
Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli...
Gespeichert in:
Veröffentlicht in: | Physics of the solid state 2018-01, Vol.60 (1), p.120-128 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 1 |
container_start_page | 120 |
container_title | Physics of the solid state |
container_volume | 60 |
creator | Borodin, E. N. Seyedkavoosi, S. Zaitsev, D. Drach, B. Mikaelyan, K. N. Panfilov, P. E. Gutkin, M. Yu Sevostianov, I. |
description | Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress. |
doi_str_mv | 10.1134/S1063783418010079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990887637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-5c1fa441763bca88385766bed5d7c3bddcbf2959082a7445138f1cddaa121f763</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A69HcyXspRa1QcOFjGzJ52CmdTE2mi_57UypUEFf3Xu45h4-D0DXgWwBC714BcyIkoSAxYCzUCZoAVrjmlOPT_c5Jvf-fo4ucVxgDAFMTpD66bAe_NnnsbDfuKhNdtTmevbdLE7vc52oI1XLbm1g5H8cuXqKzYNbZX_3MKXp_fHibzevFy9Pz7H5RW0LpWDMLwVAKgpPWGimJZILz1jvmhCWtc7YNjWIKy8YIShkQGcA6Zww0EIprim4OuUNh0rlQFSQ7xOjtqJtGCGAYH1WbNHxtfR71atimWMA0qBIuS5IoKjiobBpyTj7oTep6k3YasN73qP_0WDzNwZOLNn769Cv5X9M3cuBzIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990887637</pqid></control><display><type>article</type><title>Viscoelasticity and plasticity mechanisms of human dentin</title><source>Springer Nature</source><creator>Borodin, E. N. ; Seyedkavoosi, S. ; Zaitsev, D. ; Drach, B. ; Mikaelyan, K. N. ; Panfilov, P. E. ; Gutkin, M. Yu ; Sevostianov, I.</creator><creatorcontrib>Borodin, E. N. ; Seyedkavoosi, S. ; Zaitsev, D. ; Drach, B. ; Mikaelyan, K. N. ; Panfilov, P. E. ; Gutkin, M. Yu ; Sevostianov, I.</creatorcontrib><description>Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783418010079</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>COLLAGEN ; COMPRESSION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRACKS ; CREEP ; Deformation ; Deformation mechanisms ; DENTIN ; ELASTICITY ; Exponential functions ; FIBERS ; Human behavior ; KERNELS ; Mathematical models ; Mechanical Properties ; Micrometers ; Physics ; Physics and Astronomy ; Physics of Strength ; Plastic deformation ; Plastic zones ; PLASTICITY ; RELAXATION ; SIMULATION ; Solid State Physics ; STRESSES ; SURFACES ; Viscoelasticity ; VISCOSITY</subject><ispartof>Physics of the solid state, 2018-01, Vol.60 (1), p.120-128</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-5c1fa441763bca88385766bed5d7c3bddcbf2959082a7445138f1cddaa121f763</citedby><cites>FETCH-LOGICAL-c344t-5c1fa441763bca88385766bed5d7c3bddcbf2959082a7445138f1cddaa121f763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783418010079$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783418010079$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771500$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Borodin, E. N.</creatorcontrib><creatorcontrib>Seyedkavoosi, S.</creatorcontrib><creatorcontrib>Zaitsev, D.</creatorcontrib><creatorcontrib>Drach, B.</creatorcontrib><creatorcontrib>Mikaelyan, K. N.</creatorcontrib><creatorcontrib>Panfilov, P. E.</creatorcontrib><creatorcontrib>Gutkin, M. Yu</creatorcontrib><creatorcontrib>Sevostianov, I.</creatorcontrib><title>Viscoelasticity and plasticity mechanisms of human dentin</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress.</description><subject>COLLAGEN</subject><subject>COMPRESSION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRACKS</subject><subject>CREEP</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>DENTIN</subject><subject>ELASTICITY</subject><subject>Exponential functions</subject><subject>FIBERS</subject><subject>Human behavior</subject><subject>KERNELS</subject><subject>Mathematical models</subject><subject>Mechanical Properties</subject><subject>Micrometers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Strength</subject><subject>Plastic deformation</subject><subject>Plastic zones</subject><subject>PLASTICITY</subject><subject>RELAXATION</subject><subject>SIMULATION</subject><subject>Solid State Physics</subject><subject>STRESSES</subject><subject>SURFACES</subject><subject>Viscoelasticity</subject><subject>VISCOSITY</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2A69HcyXspRa1QcOFjGzJ52CmdTE2mi_57UypUEFf3Xu45h4-D0DXgWwBC714BcyIkoSAxYCzUCZoAVrjmlOPT_c5Jvf-fo4ucVxgDAFMTpD66bAe_NnnsbDfuKhNdtTmevbdLE7vc52oI1XLbm1g5H8cuXqKzYNbZX_3MKXp_fHibzevFy9Pz7H5RW0LpWDMLwVAKgpPWGimJZILz1jvmhCWtc7YNjWIKy8YIShkQGcA6Zww0EIprim4OuUNh0rlQFSQ7xOjtqJtGCGAYH1WbNHxtfR71atimWMA0qBIuS5IoKjiobBpyTj7oTep6k3YasN73qP_0WDzNwZOLNn769Cv5X9M3cuBzIQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Borodin, E. N.</creator><creator>Seyedkavoosi, S.</creator><creator>Zaitsev, D.</creator><creator>Drach, B.</creator><creator>Mikaelyan, K. N.</creator><creator>Panfilov, P. E.</creator><creator>Gutkin, M. Yu</creator><creator>Sevostianov, I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180101</creationdate><title>Viscoelasticity and plasticity mechanisms of human dentin</title><author>Borodin, E. N. ; Seyedkavoosi, S. ; Zaitsev, D. ; Drach, B. ; Mikaelyan, K. N. ; Panfilov, P. E. ; Gutkin, M. Yu ; Sevostianov, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-5c1fa441763bca88385766bed5d7c3bddcbf2959082a7445138f1cddaa121f763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>COLLAGEN</topic><topic>COMPRESSION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRACKS</topic><topic>CREEP</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>DENTIN</topic><topic>ELASTICITY</topic><topic>Exponential functions</topic><topic>FIBERS</topic><topic>Human behavior</topic><topic>KERNELS</topic><topic>Mathematical models</topic><topic>Mechanical Properties</topic><topic>Micrometers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Strength</topic><topic>Plastic deformation</topic><topic>Plastic zones</topic><topic>PLASTICITY</topic><topic>RELAXATION</topic><topic>SIMULATION</topic><topic>Solid State Physics</topic><topic>STRESSES</topic><topic>SURFACES</topic><topic>Viscoelasticity</topic><topic>VISCOSITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodin, E. N.</creatorcontrib><creatorcontrib>Seyedkavoosi, S.</creatorcontrib><creatorcontrib>Zaitsev, D.</creatorcontrib><creatorcontrib>Drach, B.</creatorcontrib><creatorcontrib>Mikaelyan, K. N.</creatorcontrib><creatorcontrib>Panfilov, P. E.</creatorcontrib><creatorcontrib>Gutkin, M. Yu</creatorcontrib><creatorcontrib>Sevostianov, I.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, E. N.</au><au>Seyedkavoosi, S.</au><au>Zaitsev, D.</au><au>Drach, B.</au><au>Mikaelyan, K. N.</au><au>Panfilov, P. E.</au><au>Gutkin, M. Yu</au><au>Sevostianov, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelasticity and plasticity mechanisms of human dentin</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>60</volume><issue>1</issue><spage>120</spage><epage>128</epage><pages>120-128</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783418010079</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7834 |
ispartof | Physics of the solid state, 2018-01, Vol.60 (1), p.120-128 |
issn | 1063-7834 1090-6460 |
language | eng |
recordid | cdi_osti_scitechconnect_22771500 |
source | Springer Nature |
subjects | COLLAGEN COMPRESSION CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CRACKS CREEP Deformation Deformation mechanisms DENTIN ELASTICITY Exponential functions FIBERS Human behavior KERNELS Mathematical models Mechanical Properties Micrometers Physics Physics and Astronomy Physics of Strength Plastic deformation Plastic zones PLASTICITY RELAXATION SIMULATION Solid State Physics STRESSES SURFACES Viscoelasticity VISCOSITY |
title | Viscoelasticity and plasticity mechanisms of human dentin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelasticity%20and%20plasticity%20mechanisms%20of%20human%20dentin&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Borodin,%20E.%20N.&rft.date=2018-01-01&rft.volume=60&rft.issue=1&rft.spage=120&rft.epage=128&rft.pages=120-128&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783418010079&rft_dat=%3Cproquest_osti_%3E1990887637%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990887637&rft_id=info:pmid/&rfr_iscdi=true |