Viscoelasticity and plasticity mechanisms of human dentin

Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the solid state 2018-01, Vol.60 (1), p.120-128
Hauptverfasser: Borodin, E. N., Seyedkavoosi, S., Zaitsev, D., Drach, B., Mikaelyan, K. N., Panfilov, P. E., Gutkin, M. Yu, Sevostianov, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 1
container_start_page 120
container_title Physics of the solid state
container_volume 60
creator Borodin, E. N.
Seyedkavoosi, S.
Zaitsev, D.
Drach, B.
Mikaelyan, K. N.
Panfilov, P. E.
Gutkin, M. Yu
Sevostianov, I.
description Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress.
doi_str_mv 10.1134/S1063783418010079
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990887637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-5c1fa441763bca88385766bed5d7c3bddcbf2959082a7445138f1cddaa121f763</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A69HcyXspRa1QcOFjGzJ52CmdTE2mi_57UypUEFf3Xu45h4-D0DXgWwBC714BcyIkoSAxYCzUCZoAVrjmlOPT_c5Jvf-fo4ucVxgDAFMTpD66bAe_NnnsbDfuKhNdtTmevbdLE7vc52oI1XLbm1g5H8cuXqKzYNbZX_3MKXp_fHibzevFy9Pz7H5RW0LpWDMLwVAKgpPWGimJZILz1jvmhCWtc7YNjWIKy8YIShkQGcA6Zww0EIprim4OuUNh0rlQFSQ7xOjtqJtGCGAYH1WbNHxtfR71atimWMA0qBIuS5IoKjiobBpyTj7oTep6k3YasN73qP_0WDzNwZOLNn769Cv5X9M3cuBzIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990887637</pqid></control><display><type>article</type><title>Viscoelasticity and plasticity mechanisms of human dentin</title><source>Springer Nature</source><creator>Borodin, E. N. ; Seyedkavoosi, S. ; Zaitsev, D. ; Drach, B. ; Mikaelyan, K. N. ; Panfilov, P. E. ; Gutkin, M. Yu ; Sevostianov, I.</creator><creatorcontrib>Borodin, E. N. ; Seyedkavoosi, S. ; Zaitsev, D. ; Drach, B. ; Mikaelyan, K. N. ; Panfilov, P. E. ; Gutkin, M. Yu ; Sevostianov, I.</creatorcontrib><description>Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783418010079</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>COLLAGEN ; COMPRESSION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRACKS ; CREEP ; Deformation ; Deformation mechanisms ; DENTIN ; ELASTICITY ; Exponential functions ; FIBERS ; Human behavior ; KERNELS ; Mathematical models ; Mechanical Properties ; Micrometers ; Physics ; Physics and Astronomy ; Physics of Strength ; Plastic deformation ; Plastic zones ; PLASTICITY ; RELAXATION ; SIMULATION ; Solid State Physics ; STRESSES ; SURFACES ; Viscoelasticity ; VISCOSITY</subject><ispartof>Physics of the solid state, 2018-01, Vol.60 (1), p.120-128</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-5c1fa441763bca88385766bed5d7c3bddcbf2959082a7445138f1cddaa121f763</citedby><cites>FETCH-LOGICAL-c344t-5c1fa441763bca88385766bed5d7c3bddcbf2959082a7445138f1cddaa121f763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783418010079$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783418010079$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771500$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Borodin, E. N.</creatorcontrib><creatorcontrib>Seyedkavoosi, S.</creatorcontrib><creatorcontrib>Zaitsev, D.</creatorcontrib><creatorcontrib>Drach, B.</creatorcontrib><creatorcontrib>Mikaelyan, K. N.</creatorcontrib><creatorcontrib>Panfilov, P. E.</creatorcontrib><creatorcontrib>Gutkin, M. Yu</creatorcontrib><creatorcontrib>Sevostianov, I.</creatorcontrib><title>Viscoelasticity and plasticity mechanisms of human dentin</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress.</description><subject>COLLAGEN</subject><subject>COMPRESSION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRACKS</subject><subject>CREEP</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>DENTIN</subject><subject>ELASTICITY</subject><subject>Exponential functions</subject><subject>FIBERS</subject><subject>Human behavior</subject><subject>KERNELS</subject><subject>Mathematical models</subject><subject>Mechanical Properties</subject><subject>Micrometers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Strength</subject><subject>Plastic deformation</subject><subject>Plastic zones</subject><subject>PLASTICITY</subject><subject>RELAXATION</subject><subject>SIMULATION</subject><subject>Solid State Physics</subject><subject>STRESSES</subject><subject>SURFACES</subject><subject>Viscoelasticity</subject><subject>VISCOSITY</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2A69HcyXspRa1QcOFjGzJ52CmdTE2mi_57UypUEFf3Xu45h4-D0DXgWwBC714BcyIkoSAxYCzUCZoAVrjmlOPT_c5Jvf-fo4ucVxgDAFMTpD66bAe_NnnsbDfuKhNdtTmevbdLE7vc52oI1XLbm1g5H8cuXqKzYNbZX_3MKXp_fHibzevFy9Pz7H5RW0LpWDMLwVAKgpPWGimJZILz1jvmhCWtc7YNjWIKy8YIShkQGcA6Zww0EIprim4OuUNh0rlQFSQ7xOjtqJtGCGAYH1WbNHxtfR71atimWMA0qBIuS5IoKjiobBpyTj7oTep6k3YasN73qP_0WDzNwZOLNn769Cv5X9M3cuBzIQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Borodin, E. N.</creator><creator>Seyedkavoosi, S.</creator><creator>Zaitsev, D.</creator><creator>Drach, B.</creator><creator>Mikaelyan, K. N.</creator><creator>Panfilov, P. E.</creator><creator>Gutkin, M. Yu</creator><creator>Sevostianov, I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180101</creationdate><title>Viscoelasticity and plasticity mechanisms of human dentin</title><author>Borodin, E. N. ; Seyedkavoosi, S. ; Zaitsev, D. ; Drach, B. ; Mikaelyan, K. N. ; Panfilov, P. E. ; Gutkin, M. Yu ; Sevostianov, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-5c1fa441763bca88385766bed5d7c3bddcbf2959082a7445138f1cddaa121f763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>COLLAGEN</topic><topic>COMPRESSION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRACKS</topic><topic>CREEP</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>DENTIN</topic><topic>ELASTICITY</topic><topic>Exponential functions</topic><topic>FIBERS</topic><topic>Human behavior</topic><topic>KERNELS</topic><topic>Mathematical models</topic><topic>Mechanical Properties</topic><topic>Micrometers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Strength</topic><topic>Plastic deformation</topic><topic>Plastic zones</topic><topic>PLASTICITY</topic><topic>RELAXATION</topic><topic>SIMULATION</topic><topic>Solid State Physics</topic><topic>STRESSES</topic><topic>SURFACES</topic><topic>Viscoelasticity</topic><topic>VISCOSITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodin, E. N.</creatorcontrib><creatorcontrib>Seyedkavoosi, S.</creatorcontrib><creatorcontrib>Zaitsev, D.</creatorcontrib><creatorcontrib>Drach, B.</creatorcontrib><creatorcontrib>Mikaelyan, K. N.</creatorcontrib><creatorcontrib>Panfilov, P. E.</creatorcontrib><creatorcontrib>Gutkin, M. Yu</creatorcontrib><creatorcontrib>Sevostianov, I.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, E. N.</au><au>Seyedkavoosi, S.</au><au>Zaitsev, D.</au><au>Drach, B.</au><au>Mikaelyan, K. N.</au><au>Panfilov, P. E.</au><au>Gutkin, M. Yu</au><au>Sevostianov, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelasticity and plasticity mechanisms of human dentin</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>60</volume><issue>1</issue><spage>120</spage><epage>128</epage><pages>120-128</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>Theoretical models of viscoelastic behavior and plastic deformation mechanisms of human dentin are considered. Using the linear viscoelasticity theory in which creep and relaxation kernels have the form of fraction-exponential functions, numerical values of instantaneous and long-time Young’s moduli and other characteristics of dentin viscoelasticity under uniaxial compression are found. As dentin plastic deformation mechanisms, mutual collagen fiber sliding in the region of contact of their side surfaces, separation of these fibers from each other, and irreversible tension of some collagen fibers, are proposed. It is shown that the second mechanism activation requires a smaller stress than that for activating others. The models of plastic zones at the mode I crack tip, which correspond to these mechanisms, are studied. It is shown that the plastic zone size can increase from a few hundreds of nanometers to hundreds of micrometers with increasing applied stress.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783418010079</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2018-01, Vol.60 (1), p.120-128
issn 1063-7834
1090-6460
language eng
recordid cdi_osti_scitechconnect_22771500
source Springer Nature
subjects COLLAGEN
COMPRESSION
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRACKS
CREEP
Deformation
Deformation mechanisms
DENTIN
ELASTICITY
Exponential functions
FIBERS
Human behavior
KERNELS
Mathematical models
Mechanical Properties
Micrometers
Physics
Physics and Astronomy
Physics of Strength
Plastic deformation
Plastic zones
PLASTICITY
RELAXATION
SIMULATION
Solid State Physics
STRESSES
SURFACES
Viscoelasticity
VISCOSITY
title Viscoelasticity and plasticity mechanisms of human dentin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelasticity%20and%20plasticity%20mechanisms%20of%20human%20dentin&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Borodin,%20E.%20N.&rft.date=2018-01-01&rft.volume=60&rft.issue=1&rft.spage=120&rft.epage=128&rft.pages=120-128&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783418010079&rft_dat=%3Cproquest_osti_%3E1990887637%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990887637&rft_id=info:pmid/&rfr_iscdi=true