Quasielliptic Operators and Equations Not Solvable with Respect to the Higher Order Derivative

We consider a class of quasielliptic operators in R n and establish the isomorphism property in special weighted Sobolev spaces. In more general weighted spaces, we obtain the unique solvability conditions for quasielliptic equations and prove estimates for solutions. Based on the obtained results,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-03, Vol.230 (1), p.25-35
1. Verfasser: Demidenko, G. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 25
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 230
creator Demidenko, G. V.
description We consider a class of quasielliptic operators in R n and establish the isomorphism property in special weighted Sobolev spaces. In more general weighted spaces, we obtain the unique solvability conditions for quasielliptic equations and prove estimates for solutions. Based on the obtained results, we study the solvability of the initial problem for equations that are not solvable with respect to the higher order derivative.
doi_str_mv 10.1007/s10958-018-3723-2
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541397389</galeid><sourcerecordid>A541397389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3982-9c299d9c9fcbd4ee689de7b15913348f9566b3b881d0d334cda65302b6499ac13</originalsourceid><addsrcrecordid>eNp1kl1rFDEUhgdRsFZ_gHcBr7xIm4-ZSXJZamsLxcVWbw2Z5MxsyuxkmmRW_fdNWWFZWAkk4fA8h8PhraqPlJxRQsR5okQ1EhMqMReMY_aqOqGN4FgK1bwufyIY5lzUb6t3KT2S4rSSn1S_vi8meRhHP2dv0WqGaHKICZnJoaunxWQfpoS-hYwewrg13Qjot89rdA9pBptRDiivAd34YQ0RraIr9xeIflvMLbyv3vRmTPDh33ta_by--nF5g-9WX28vL-6w5UoyrCxTyimretu5GqCVyoHoaKMo57XsVdO2He-kpI64UrHOtA0nrGtrpYyl_LT6tOsbUvY6WZ_Brm2YpjKiZkwIWhO5p-YYnhZIWT-GJU5lMM0Ipa1oVMv31GBG0H7qQ47Gbnyy-qKpKVeCS1UofIQaYCoLHMMEvS_lA_7sCF-Og423R4XPB0JhMvzJg1lS0rcP94cs3bE2hpQi9HqOfmPiX02JfsmH3uVDl3zol3xoVhy2c1JhpwHifhn_l54BmTG5xA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011675963</pqid></control><display><type>article</type><title>Quasielliptic Operators and Equations Not Solvable with Respect to the Higher Order Derivative</title><source>Springer Nature - Complete Springer Journals</source><creator>Demidenko, G. V.</creator><creatorcontrib>Demidenko, G. V.</creatorcontrib><description>We consider a class of quasielliptic operators in R n and establish the isomorphism property in special weighted Sobolev spaces. In more general weighted spaces, we obtain the unique solvability conditions for quasielliptic equations and prove estimates for solutions. Based on the obtained results, we study the solvability of the initial problem for equations that are not solvable with respect to the higher order derivative.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-018-3723-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>EQUATIONS ; Isomorphism ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; MATHEMATICAL OPERATORS ; MATHEMATICAL SOLUTIONS ; MATHEMATICAL SPACE ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Sobolev space</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2018-03, Vol.230 (1), p.25-35</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3982-9c299d9c9fcbd4ee689de7b15913348f9566b3b881d0d334cda65302b6499ac13</citedby><cites>FETCH-LOGICAL-c3982-9c299d9c9fcbd4ee689de7b15913348f9566b3b881d0d334cda65302b6499ac13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-018-3723-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-018-3723-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771408$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Demidenko, G. V.</creatorcontrib><title>Quasielliptic Operators and Equations Not Solvable with Respect to the Higher Order Derivative</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a class of quasielliptic operators in R n and establish the isomorphism property in special weighted Sobolev spaces. In more general weighted spaces, we obtain the unique solvability conditions for quasielliptic equations and prove estimates for solutions. Based on the obtained results, we study the solvability of the initial problem for equations that are not solvable with respect to the higher order derivative.</description><subject>EQUATIONS</subject><subject>Isomorphism</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>MATHEMATICAL SPACE</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Sobolev space</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kl1rFDEUhgdRsFZ_gHcBr7xIm4-ZSXJZamsLxcVWbw2Z5MxsyuxkmmRW_fdNWWFZWAkk4fA8h8PhraqPlJxRQsR5okQ1EhMqMReMY_aqOqGN4FgK1bwufyIY5lzUb6t3KT2S4rSSn1S_vi8meRhHP2dv0WqGaHKICZnJoaunxWQfpoS-hYwewrg13Qjot89rdA9pBptRDiivAd34YQ0RraIr9xeIflvMLbyv3vRmTPDh33ta_by--nF5g-9WX28vL-6w5UoyrCxTyimretu5GqCVyoHoaKMo57XsVdO2He-kpI64UrHOtA0nrGtrpYyl_LT6tOsbUvY6WZ_Brm2YpjKiZkwIWhO5p-YYnhZIWT-GJU5lMM0Ipa1oVMv31GBG0H7qQ47Gbnyy-qKpKVeCS1UofIQaYCoLHMMEvS_lA_7sCF-Og423R4XPB0JhMvzJg1lS0rcP94cs3bE2hpQi9HqOfmPiX02JfsmH3uVDl3zol3xoVhy2c1JhpwHifhn_l54BmTG5xA</recordid><startdate>20180316</startdate><enddate>20180316</enddate><creator>Demidenko, G. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180316</creationdate><title>Quasielliptic Operators and Equations Not Solvable with Respect to the Higher Order Derivative</title><author>Demidenko, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3982-9c299d9c9fcbd4ee689de7b15913348f9566b3b881d0d334cda65302b6499ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>EQUATIONS</topic><topic>Isomorphism</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>MATHEMATICAL SPACE</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demidenko, G. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demidenko, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasielliptic Operators and Equations Not Solvable with Respect to the Higher Order Derivative</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2018-03-16</date><risdate>2018</risdate><volume>230</volume><issue>1</issue><spage>25</spage><epage>35</epage><pages>25-35</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a class of quasielliptic operators in R n and establish the isomorphism property in special weighted Sobolev spaces. In more general weighted spaces, we obtain the unique solvability conditions for quasielliptic equations and prove estimates for solutions. Based on the obtained results, we study the solvability of the initial problem for equations that are not solvable with respect to the higher order derivative.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-018-3723-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2018-03, Vol.230 (1), p.25-35
issn 1072-3374
1573-8795
language eng
recordid cdi_osti_scitechconnect_22771408
source Springer Nature - Complete Springer Journals
subjects EQUATIONS
Isomorphism
Mathematical analysis
MATHEMATICAL METHODS AND COMPUTING
MATHEMATICAL OPERATORS
MATHEMATICAL SOLUTIONS
MATHEMATICAL SPACE
Mathematics
Mathematics and Statistics
Operators (mathematics)
Sobolev space
title Quasielliptic Operators and Equations Not Solvable with Respect to the Higher Order Derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasielliptic%20Operators%20and%20Equations%20Not%20Solvable%20with%20Respect%20to%20the%20Higher%20Order%20Derivative&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Demidenko,%20G.%20V.&rft.date=2018-03-16&rft.volume=230&rft.issue=1&rft.spage=25&rft.epage=35&rft.pages=25-35&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-018-3723-2&rft_dat=%3Cgale_osti_%3EA541397389%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011675963&rft_id=info:pmid/&rft_galeid=A541397389&rfr_iscdi=true