Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space

We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-06, Vol.231 (5), p.641-649
Hauptverfasser: Stankevich, V. Z., Butrak, I. O., Zhbadyns’kyi, I. Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 649
container_issue 5
container_start_page 641
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 231
creator Stankevich, V. Z.
Butrak, I. O.
Zhbadyns’kyi, I. Ya
description We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the contour of the inclusion are analyzed.
doi_str_mv 10.1007/s10958-018-3841-x
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A545566160</galeid><sourcerecordid>A545566160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398x-252776d7ea7723d525e144cb06c5c0f7e4353ec54667246e5fb4405758c0b1733</originalsourceid><addsrcrecordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89KNW3do_BTRtDoCVp6VHI8mitsJZcSQ7Ov6-MA4nBRYcRw_MMw_B23UdKLigh-kuhZJA9JrTHvBcU7151Z1Rqjns9yNftTzTDnGvxtntXyj1pjur5Wffza_A-W1dDiih5dGsfJwjjCv2xD1BQa1o0S-vNFGysaB7dtC17NERUV4CuJltqcOjaTh7dbayD990bb6cCH57qeff729Wv2TW--fF9Pru8wY4P_Q4zybRWSw1Wa8aXkkmgQrgFUU464jUILjk4KZTSTCiQfiEEkVr2jiyo5vy8-3SYm9oCprhQwa1cihFcNawNp1S8oDY5_d1CqeY-bXNsixlG-DAIqnv9TI12AhOiT7WdZB2KM5dSSKkUVaRR-AQ1QoRspxTBh9Y-4i9O8O0tYR3cSeHzkdCYCrs62m0pZn53e8zSA-tyKiWDN5sc1jY_GkrMPhHmkAjTEmH2iTC75rCDUxobR8jPx_i_9A8D3LNr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039941787</pqid></control><display><type>article</type><title>Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space</title><source>SpringerLink Journals - AutoHoldings</source><creator>Stankevich, V. Z. ; Butrak, I. O. ; Zhbadyns’kyi, I. Ya</creator><creatorcontrib>Stankevich, V. Z. ; Butrak, I. O. ; Zhbadyns’kyi, I. Ya</creatorcontrib><description>We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the contour of the inclusion are analyzed.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-018-3841-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary integral method ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFRACTION ; ELASTICITY ; INTEGRAL EQUATIONS ; MATHEMATICAL METHODS AND COMPUTING ; Mathematics ; Mathematics and Statistics ; Modulus of elasticity ; Plane waves ; RAYLEIGH WAVES ; Seismology ; STRESS INTENSITY FACTORS ; THREE-DIMENSIONAL CALCULATIONS ; Wave diffraction ; WAVE PROPAGATION</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2018-06, Vol.231 (5), p.641-649</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398x-252776d7ea7723d525e144cb06c5c0f7e4353ec54667246e5fb4405758c0b1733</citedby><cites>FETCH-LOGICAL-c398x-252776d7ea7723d525e144cb06c5c0f7e4353ec54667246e5fb4405758c0b1733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-018-3841-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-018-3841-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771143$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stankevich, V. Z.</creatorcontrib><creatorcontrib>Butrak, I. O.</creatorcontrib><creatorcontrib>Zhbadyns’kyi, I. Ya</creatorcontrib><title>Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the contour of the inclusion are analyzed.</description><subject>Boundary integral method</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFRACTION</subject><subject>ELASTICITY</subject><subject>INTEGRAL EQUATIONS</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modulus of elasticity</subject><subject>Plane waves</subject><subject>RAYLEIGH WAVES</subject><subject>Seismology</subject><subject>STRESS INTENSITY FACTORS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>Wave diffraction</subject><subject>WAVE PROPAGATION</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89KNW3do_BTRtDoCVp6VHI8mitsJZcSQ7Ov6-MA4nBRYcRw_MMw_B23UdKLigh-kuhZJA9JrTHvBcU7151Z1Rqjns9yNftTzTDnGvxtntXyj1pjur5Wffza_A-W1dDiih5dGsfJwjjCv2xD1BQa1o0S-vNFGysaB7dtC17NERUV4CuJltqcOjaTh7dbayD990bb6cCH57qeff729Wv2TW--fF9Pru8wY4P_Q4zybRWSw1Wa8aXkkmgQrgFUU464jUILjk4KZTSTCiQfiEEkVr2jiyo5vy8-3SYm9oCprhQwa1cihFcNawNp1S8oDY5_d1CqeY-bXNsixlG-DAIqnv9TI12AhOiT7WdZB2KM5dSSKkUVaRR-AQ1QoRspxTBh9Y-4i9O8O0tYR3cSeHzkdCYCrs62m0pZn53e8zSA-tyKiWDN5sc1jY_GkrMPhHmkAjTEmH2iTC75rCDUxobR8jPx_i_9A8D3LNr</recordid><startdate>20180604</startdate><enddate>20180604</enddate><creator>Stankevich, V. Z.</creator><creator>Butrak, I. O.</creator><creator>Zhbadyns’kyi, I. Ya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180604</creationdate><title>Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space</title><author>Stankevich, V. Z. ; Butrak, I. O. ; Zhbadyns’kyi, I. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398x-252776d7ea7723d525e144cb06c5c0f7e4353ec54667246e5fb4405758c0b1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary integral method</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFRACTION</topic><topic>ELASTICITY</topic><topic>INTEGRAL EQUATIONS</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modulus of elasticity</topic><topic>Plane waves</topic><topic>RAYLEIGH WAVES</topic><topic>Seismology</topic><topic>STRESS INTENSITY FACTORS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>Wave diffraction</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stankevich, V. Z.</creatorcontrib><creatorcontrib>Butrak, I. O.</creatorcontrib><creatorcontrib>Zhbadyns’kyi, I. Ya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stankevich, V. Z.</au><au>Butrak, I. O.</au><au>Zhbadyns’kyi, I. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2018-06-04</date><risdate>2018</risdate><volume>231</volume><issue>5</issue><spage>641</spage><epage>649</epage><pages>641-649</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the contour of the inclusion are analyzed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-018-3841-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2018-06, Vol.231 (5), p.641-649
issn 1072-3374
1573-8795
language eng
recordid cdi_osti_scitechconnect_22771143
source SpringerLink Journals - AutoHoldings
subjects Boundary integral method
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DIFFRACTION
ELASTICITY
INTEGRAL EQUATIONS
MATHEMATICAL METHODS AND COMPUTING
Mathematics
Mathematics and Statistics
Modulus of elasticity
Plane waves
RAYLEIGH WAVES
Seismology
STRESS INTENSITY FACTORS
THREE-DIMENSIONAL CALCULATIONS
Wave diffraction
WAVE PROPAGATION
title Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffraction%20of%20Rayleigh%20Waves%20on%20a%20Compliant%20Inclusion%20in%20the%20Elastic%20Half%20Space&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Stankevich,%20V.%20Z.&rft.date=2018-06-04&rft.volume=231&rft.issue=5&rft.spage=641&rft.epage=649&rft.pages=641-649&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-018-3841-x&rft_dat=%3Cgale_osti_%3EA545566160%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039941787&rft_id=info:pmid/&rft_galeid=A545566160&rfr_iscdi=true