Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space
We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the cont...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-06, Vol.231 (5), p.641-649 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 649 |
---|---|
container_issue | 5 |
container_start_page | 641 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 231 |
creator | Stankevich, V. Z. Butrak, I. O. Zhbadyns’kyi, I. Ya |
description | We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the contour of the inclusion are analyzed. |
doi_str_mv | 10.1007/s10958-018-3841-x |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A545566160</galeid><sourcerecordid>A545566160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398x-252776d7ea7723d525e144cb06c5c0f7e4353ec54667246e5fb4405758c0b1733</originalsourceid><addsrcrecordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89KNW3do_BTRtDoCVp6VHI8mitsJZcSQ7Ov6-MA4nBRYcRw_MMw_B23UdKLigh-kuhZJA9JrTHvBcU7151Z1Rqjns9yNftTzTDnGvxtntXyj1pjur5Wffza_A-W1dDiih5dGsfJwjjCv2xD1BQa1o0S-vNFGysaB7dtC17NERUV4CuJltqcOjaTh7dbayD990bb6cCH57qeff729Wv2TW--fF9Pru8wY4P_Q4zybRWSw1Wa8aXkkmgQrgFUU464jUILjk4KZTSTCiQfiEEkVr2jiyo5vy8-3SYm9oCprhQwa1cihFcNawNp1S8oDY5_d1CqeY-bXNsixlG-DAIqnv9TI12AhOiT7WdZB2KM5dSSKkUVaRR-AQ1QoRspxTBh9Y-4i9O8O0tYR3cSeHzkdCYCrs62m0pZn53e8zSA-tyKiWDN5sc1jY_GkrMPhHmkAjTEmH2iTC75rCDUxobR8jPx_i_9A8D3LNr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039941787</pqid></control><display><type>article</type><title>Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space</title><source>SpringerLink Journals - AutoHoldings</source><creator>Stankevich, V. Z. ; Butrak, I. O. ; Zhbadyns’kyi, I. Ya</creator><creatorcontrib>Stankevich, V. Z. ; Butrak, I. O. ; Zhbadyns’kyi, I. Ya</creatorcontrib><description>We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the contour of the inclusion are analyzed.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-018-3841-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary integral method ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFRACTION ; ELASTICITY ; INTEGRAL EQUATIONS ; MATHEMATICAL METHODS AND COMPUTING ; Mathematics ; Mathematics and Statistics ; Modulus of elasticity ; Plane waves ; RAYLEIGH WAVES ; Seismology ; STRESS INTENSITY FACTORS ; THREE-DIMENSIONAL CALCULATIONS ; Wave diffraction ; WAVE PROPAGATION</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2018-06, Vol.231 (5), p.641-649</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398x-252776d7ea7723d525e144cb06c5c0f7e4353ec54667246e5fb4405758c0b1733</citedby><cites>FETCH-LOGICAL-c398x-252776d7ea7723d525e144cb06c5c0f7e4353ec54667246e5fb4405758c0b1733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-018-3841-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-018-3841-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771143$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stankevich, V. Z.</creatorcontrib><creatorcontrib>Butrak, I. O.</creatorcontrib><creatorcontrib>Zhbadyns’kyi, I. Ya</creatorcontrib><title>Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the contour of the inclusion are analyzed.</description><subject>Boundary integral method</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFRACTION</subject><subject>ELASTICITY</subject><subject>INTEGRAL EQUATIONS</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modulus of elasticity</subject><subject>Plane waves</subject><subject>RAYLEIGH WAVES</subject><subject>Seismology</subject><subject>STRESS INTENSITY FACTORS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>Wave diffraction</subject><subject>WAVE PROPAGATION</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kk1rGzEQhpfSQtO0P6A3QU89KNW3do_BTRtDoCVp6VHI8mitsJZcSQ7Ov6-MA4nBRYcRw_MMw_B23UdKLigh-kuhZJA9JrTHvBcU7151Z1Rqjns9yNftTzTDnGvxtntXyj1pjur5Wffza_A-W1dDiih5dGsfJwjjCv2xD1BQa1o0S-vNFGysaB7dtC17NERUV4CuJltqcOjaTh7dbayD990bb6cCH57qeff729Wv2TW--fF9Pru8wY4P_Q4zybRWSw1Wa8aXkkmgQrgFUU464jUILjk4KZTSTCiQfiEEkVr2jiyo5vy8-3SYm9oCprhQwa1cihFcNawNp1S8oDY5_d1CqeY-bXNsixlG-DAIqnv9TI12AhOiT7WdZB2KM5dSSKkUVaRR-AQ1QoRspxTBh9Y-4i9O8O0tYR3cSeHzkdCYCrs62m0pZn53e8zSA-tyKiWDN5sc1jY_GkrMPhHmkAjTEmH2iTC75rCDUxobR8jPx_i_9A8D3LNr</recordid><startdate>20180604</startdate><enddate>20180604</enddate><creator>Stankevich, V. Z.</creator><creator>Butrak, I. O.</creator><creator>Zhbadyns’kyi, I. Ya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180604</creationdate><title>Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space</title><author>Stankevich, V. Z. ; Butrak, I. O. ; Zhbadyns’kyi, I. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398x-252776d7ea7723d525e144cb06c5c0f7e4353ec54667246e5fb4405758c0b1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary integral method</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFRACTION</topic><topic>ELASTICITY</topic><topic>INTEGRAL EQUATIONS</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modulus of elasticity</topic><topic>Plane waves</topic><topic>RAYLEIGH WAVES</topic><topic>Seismology</topic><topic>STRESS INTENSITY FACTORS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>Wave diffraction</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stankevich, V. Z.</creatorcontrib><creatorcontrib>Butrak, I. O.</creatorcontrib><creatorcontrib>Zhbadyns’kyi, I. Ya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stankevich, V. Z.</au><au>Butrak, I. O.</au><au>Zhbadyns’kyi, I. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2018-06-04</date><risdate>2018</risdate><volume>231</volume><issue>5</issue><spage>641</spage><epage>649</epage><pages>641-649</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider a three-dimensional dynamical problem of diffraction of Rayleigh plane waves on a circular compliant inclusion in the elastic half space. To solve the problem, we use the method of boundary integral equations. The dynamical stress intensity factors in the vicinities of points of the contour of the inclusion are analyzed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-018-3841-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2018-06, Vol.231 (5), p.641-649 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_osti_scitechconnect_22771143 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary integral method CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DIFFRACTION ELASTICITY INTEGRAL EQUATIONS MATHEMATICAL METHODS AND COMPUTING Mathematics Mathematics and Statistics Modulus of elasticity Plane waves RAYLEIGH WAVES Seismology STRESS INTENSITY FACTORS THREE-DIMENSIONAL CALCULATIONS Wave diffraction WAVE PROPAGATION |
title | Diffraction of Rayleigh Waves on a Compliant Inclusion in the Elastic Half Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffraction%20of%20Rayleigh%20Waves%20on%20a%20Compliant%20Inclusion%20in%20the%20Elastic%20Half%20Space&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Stankevich,%20V.%20Z.&rft.date=2018-06-04&rft.volume=231&rft.issue=5&rft.spage=641&rft.epage=649&rft.pages=641-649&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-018-3841-x&rft_dat=%3Cgale_osti_%3EA545566160%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039941787&rft_id=info:pmid/&rft_galeid=A545566160&rfr_iscdi=true |