Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters

We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bendin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-06, Vol.231 (5), p.665-677
1. Verfasser: Krutii, Yu. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 677
container_issue 5
container_start_page 665
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 231
creator Krutii, Yu. S.
description We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bending. As a result, we obtain the formulas for displacements and internal forces in any cross section of the bar in the analytic form.
doi_str_mv 10.1007/s10958-018-3843-8
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A545566162</galeid><sourcerecordid>A545566162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3988-2c7a15c76a3b09b4f277a51644433bdf4295ee7c4c6f02853e07b836705a773</originalsourceid><addsrcrecordid>eNp1kk1rGzEQhpeSQp2PH5DbQk89bKrPlfbomjYJBGri3oVWnrVldiVX0tL431dmE1KDiw6aEc_7MjOaorjF6A4jJL5GjBouK4RlRSWjlfxQzDAXORANv8gxEqSiVLBPxWWMO5Q1taSzYr3wLqYwmmS9K31X6nLl-_EtS1sol8G3PQzHdJV0a3ubDhP5TYfyj03bch5am4IOhzLbJetGP8ZyqYMeIEGI18XHTvcRbl7vq2L14_uvxUP19PP-cTF_qgxtpKyIERpzI2pNW9S0rCNCaI5rxhil7bpjpOEAwjBTd4hITgGJVtJaIK6FoFfF58nVx2RVNDaB2RrvHJikSPbCmOF3ah_87xFiUjs_BpfLUgTRpmF5hP9QG92Dsq7zuT0z2GjUnDPO6xrXJFPVGWoDDoLuvYPO5ucT_u4Mn88aBmvOCr6cCDKT4CVt9Bijelw9n7J4Yk3wMQbo1D7YIf-Jwkgdd0RNO6Jyg-q4I0pmDZk0MbNuA-F9GP8X_QWFbLpe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039940181</pqid></control><display><type>article</type><title>Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters</title><source>SpringerLink Journals - AutoHoldings</source><creator>Krutii, Yu. S.</creator><creatorcontrib>Krutii, Yu. S.</creatorcontrib><description>We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bending. As a result, we obtain the formulas for displacements and internal forces in any cross section of the bar in the analytic form.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-018-3843-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ANALYTIC FUNCTIONS ; BENDING ; Continuity (mathematics) ; DIFFERENTIAL EQUATIONS ; EXACT SOLUTIONS ; Heavy construction ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; Mathematics ; Mathematics and Statistics ; Power lines ; Stability ; Stiffness</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2018-06, Vol.231 (5), p.665-677</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3988-2c7a15c76a3b09b4f277a51644433bdf4295ee7c4c6f02853e07b836705a773</citedby><cites>FETCH-LOGICAL-c3988-2c7a15c76a3b09b4f277a51644433bdf4295ee7c4c6f02853e07b836705a773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-018-3843-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-018-3843-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771141$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krutii, Yu. S.</creatorcontrib><title>Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bending. As a result, we obtain the formulas for displacements and internal forces in any cross section of the bar in the analytic form.</description><subject>ANALYTIC FUNCTIONS</subject><subject>BENDING</subject><subject>Continuity (mathematics)</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EXACT SOLUTIONS</subject><subject>Heavy construction</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Power lines</subject><subject>Stability</subject><subject>Stiffness</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kk1rGzEQhpeSQp2PH5DbQk89bKrPlfbomjYJBGri3oVWnrVldiVX0tL431dmE1KDiw6aEc_7MjOaorjF6A4jJL5GjBouK4RlRSWjlfxQzDAXORANv8gxEqSiVLBPxWWMO5Q1taSzYr3wLqYwmmS9K31X6nLl-_EtS1sol8G3PQzHdJV0a3ubDhP5TYfyj03bch5am4IOhzLbJetGP8ZyqYMeIEGI18XHTvcRbl7vq2L14_uvxUP19PP-cTF_qgxtpKyIERpzI2pNW9S0rCNCaI5rxhil7bpjpOEAwjBTd4hITgGJVtJaIK6FoFfF58nVx2RVNDaB2RrvHJikSPbCmOF3ah_87xFiUjs_BpfLUgTRpmF5hP9QG92Dsq7zuT0z2GjUnDPO6xrXJFPVGWoDDoLuvYPO5ucT_u4Mn88aBmvOCr6cCDKT4CVt9Bijelw9n7J4Yk3wMQbo1D7YIf-Jwkgdd0RNO6Jyg-q4I0pmDZk0MbNuA-F9GP8X_QWFbLpe</recordid><startdate>20180604</startdate><enddate>20180604</enddate><creator>Krutii, Yu. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180604</creationdate><title>Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters</title><author>Krutii, Yu. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3988-2c7a15c76a3b09b4f277a51644433bdf4295ee7c4c6f02853e07b836705a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ANALYTIC FUNCTIONS</topic><topic>BENDING</topic><topic>Continuity (mathematics)</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EXACT SOLUTIONS</topic><topic>Heavy construction</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Power lines</topic><topic>Stability</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krutii, Yu. S.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krutii, Yu. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2018-06-04</date><risdate>2018</risdate><volume>231</volume><issue>5</issue><spage>665</spage><epage>677</epage><pages>665-677</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bending. As a result, we obtain the formulas for displacements and internal forces in any cross section of the bar in the analytic form.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-018-3843-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2018-06, Vol.231 (5), p.665-677
issn 1072-3374
1573-8795
language eng
recordid cdi_osti_scitechconnect_22771141
source SpringerLink Journals - AutoHoldings
subjects ANALYTIC FUNCTIONS
BENDING
Continuity (mathematics)
DIFFERENTIAL EQUATIONS
EXACT SOLUTIONS
Heavy construction
Mathematical analysis
MATHEMATICAL METHODS AND COMPUTING
Mathematics
Mathematics and Statistics
Power lines
Stability
Stiffness
title Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Solution%20of%20the%20Problem%20of%20Stability%20of%20a%20Bar%20with%20Arbitrary%20Continuous%20Parameters&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Krutii,%20Yu.%20S.&rft.date=2018-06-04&rft.volume=231&rft.issue=5&rft.spage=665&rft.epage=677&rft.pages=665-677&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-018-3843-8&rft_dat=%3Cgale_osti_%3EA545566162%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039940181&rft_id=info:pmid/&rft_galeid=A545566162&rfr_iscdi=true