Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters
We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bendin...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-06, Vol.231 (5), p.665-677 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 677 |
---|---|
container_issue | 5 |
container_start_page | 665 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 231 |
creator | Krutii, Yu. S. |
description | We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bending. As a result, we obtain the formulas for displacements and internal forces in any cross section of the bar in the analytic form. |
doi_str_mv | 10.1007/s10958-018-3843-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A545566162</galeid><sourcerecordid>A545566162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3988-2c7a15c76a3b09b4f277a51644433bdf4295ee7c4c6f02853e07b836705a773</originalsourceid><addsrcrecordid>eNp1kk1rGzEQhpeSQp2PH5DbQk89bKrPlfbomjYJBGri3oVWnrVldiVX0tL431dmE1KDiw6aEc_7MjOaorjF6A4jJL5GjBouK4RlRSWjlfxQzDAXORANv8gxEqSiVLBPxWWMO5Q1taSzYr3wLqYwmmS9K31X6nLl-_EtS1sol8G3PQzHdJV0a3ubDhP5TYfyj03bch5am4IOhzLbJetGP8ZyqYMeIEGI18XHTvcRbl7vq2L14_uvxUP19PP-cTF_qgxtpKyIERpzI2pNW9S0rCNCaI5rxhil7bpjpOEAwjBTd4hITgGJVtJaIK6FoFfF58nVx2RVNDaB2RrvHJikSPbCmOF3ah_87xFiUjs_BpfLUgTRpmF5hP9QG92Dsq7zuT0z2GjUnDPO6xrXJFPVGWoDDoLuvYPO5ucT_u4Mn88aBmvOCr6cCDKT4CVt9Bijelw9n7J4Yk3wMQbo1D7YIf-Jwkgdd0RNO6Jyg-q4I0pmDZk0MbNuA-F9GP8X_QWFbLpe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039940181</pqid></control><display><type>article</type><title>Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters</title><source>SpringerLink Journals - AutoHoldings</source><creator>Krutii, Yu. S.</creator><creatorcontrib>Krutii, Yu. S.</creatorcontrib><description>We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bending. As a result, we obtain the formulas for displacements and internal forces in any cross section of the bar in the analytic form.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-018-3843-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ANALYTIC FUNCTIONS ; BENDING ; Continuity (mathematics) ; DIFFERENTIAL EQUATIONS ; EXACT SOLUTIONS ; Heavy construction ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; Mathematics ; Mathematics and Statistics ; Power lines ; Stability ; Stiffness</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2018-06, Vol.231 (5), p.665-677</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3988-2c7a15c76a3b09b4f277a51644433bdf4295ee7c4c6f02853e07b836705a773</citedby><cites>FETCH-LOGICAL-c3988-2c7a15c76a3b09b4f277a51644433bdf4295ee7c4c6f02853e07b836705a773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-018-3843-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-018-3843-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771141$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krutii, Yu. S.</creatorcontrib><title>Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bending. As a result, we obtain the formulas for displacements and internal forces in any cross section of the bar in the analytic form.</description><subject>ANALYTIC FUNCTIONS</subject><subject>BENDING</subject><subject>Continuity (mathematics)</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EXACT SOLUTIONS</subject><subject>Heavy construction</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Power lines</subject><subject>Stability</subject><subject>Stiffness</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kk1rGzEQhpeSQp2PH5DbQk89bKrPlfbomjYJBGri3oVWnrVldiVX0tL431dmE1KDiw6aEc_7MjOaorjF6A4jJL5GjBouK4RlRSWjlfxQzDAXORANv8gxEqSiVLBPxWWMO5Q1taSzYr3wLqYwmmS9K31X6nLl-_EtS1sol8G3PQzHdJV0a3ubDhP5TYfyj03bch5am4IOhzLbJetGP8ZyqYMeIEGI18XHTvcRbl7vq2L14_uvxUP19PP-cTF_qgxtpKyIERpzI2pNW9S0rCNCaI5rxhil7bpjpOEAwjBTd4hITgGJVtJaIK6FoFfF58nVx2RVNDaB2RrvHJikSPbCmOF3ah_87xFiUjs_BpfLUgTRpmF5hP9QG92Dsq7zuT0z2GjUnDPO6xrXJFPVGWoDDoLuvYPO5ucT_u4Mn88aBmvOCr6cCDKT4CVt9Bijelw9n7J4Yk3wMQbo1D7YIf-Jwkgdd0RNO6Jyg-q4I0pmDZk0MbNuA-F9GP8X_QWFbLpe</recordid><startdate>20180604</startdate><enddate>20180604</enddate><creator>Krutii, Yu. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180604</creationdate><title>Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters</title><author>Krutii, Yu. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3988-2c7a15c76a3b09b4f277a51644433bdf4295ee7c4c6f02853e07b836705a773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ANALYTIC FUNCTIONS</topic><topic>BENDING</topic><topic>Continuity (mathematics)</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EXACT SOLUTIONS</topic><topic>Heavy construction</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Power lines</topic><topic>Stability</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krutii, Yu. S.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krutii, Yu. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2018-06-04</date><risdate>2018</risdate><volume>231</volume><issue>5</issue><spage>665</spage><epage>677</epage><pages>665-677</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider the problem of stability of a bar with arbitrary continuous variable flexural stiffness compressed by an arbitrary continuously applied variable axial longitudinal force. For the first time, we construct the exact solution of the corresponding differential equation of longitudinal bending. As a result, we obtain the formulas for displacements and internal forces in any cross section of the bar in the analytic form.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-018-3843-8</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2018-06, Vol.231 (5), p.665-677 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_osti_scitechconnect_22771141 |
source | SpringerLink Journals - AutoHoldings |
subjects | ANALYTIC FUNCTIONS BENDING Continuity (mathematics) DIFFERENTIAL EQUATIONS EXACT SOLUTIONS Heavy construction Mathematical analysis MATHEMATICAL METHODS AND COMPUTING Mathematics Mathematics and Statistics Power lines Stability Stiffness |
title | Construction of a Solution of the Problem of Stability of a Bar with Arbitrary Continuous Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Solution%20of%20the%20Problem%20of%20Stability%20of%20a%20Bar%20with%20Arbitrary%20Continuous%20Parameters&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Krutii,%20Yu.%20S.&rft.date=2018-06-04&rft.volume=231&rft.issue=5&rft.spage=665&rft.epage=677&rft.pages=665-677&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-018-3843-8&rft_dat=%3Cgale_osti_%3EA545566162%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039940181&rft_id=info:pmid/&rft_galeid=A545566162&rfr_iscdi=true |