Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma
This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled...
Gespeichert in:
Veröffentlicht in: | Plasma physics reports 2017-05, Vol.43 (5), p.588-593 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 593 |
---|---|
container_issue | 5 |
container_start_page | 588 |
container_title | Plasma physics reports |
container_volume | 43 |
creator | Younus, Maria Rehman, N. U. Shafiq, M. Naeem, M. Zaka-ul-Islam, M. Zakaullah, M. |
description | This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density
n
e
, electron temperature
T
e
, plasma potential
V
p
, skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend. |
doi_str_mv | 10.1134/S1063780X17050105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22760333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902155625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d27b23cbf0abfbd4fd501739ad0c14483d7f9c0fff49e2e575fadd537ae5dbda3</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLg-vgAbwHPo3lMJjtHWXzBgodV8BYyeexmmUnGJCPs35tlRQSxL910VxXVBcAVRjcY0_p2hVFD-Ry9Y44YwogdgRlmDamals6Py1zO1f5-Cs5S2iKE8ZzhGVgtpV8Pk4twjKEzMOVJ72CwUHrovJ5Udp-m30EVprE3Gg5y7U12qhpDbyrjN9Krst6Y3k0DHHuZBnkBTqzsk7n87ufg7eH-dfFULV8enxd3y0rRus6VJrwjVHUWyc52ura6GOe0lRopXNdzqrltFbLW1q0hhnFmpdaMcmmY7rSk5-D6oBtSdiIpl43aqOC9UVkQwhtES_2gyoMfk0lZbMMUfTEmcIsIZiUlVlD4gFIxpBSNFWN0g4w7gZHYJyz-JFw45MBJBevXJv5S_pf0BYtQfoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902155625</pqid></control><display><type>article</type><title>Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma</title><source>Springer Nature - Complete Springer Journals</source><creator>Younus, Maria ; Rehman, N. U. ; Shafiq, M. ; Naeem, M. ; Zaka-ul-Islam, M. ; Zakaullah, M.</creator><creatorcontrib>Younus, Maria ; Rehman, N. U. ; Shafiq, M. ; Naeem, M. ; Zaka-ul-Islam, M. ; Zakaullah, M.</creatorcontrib><description>This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density
n
e
, electron temperature
T
e
, plasma potential
V
p
, skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.</description><identifier>ISSN: 1063-780X</identifier><identifier>EISSN: 1562-6938</identifier><identifier>DOI: 10.1134/S1063780X17050105</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Atomic ; Electron energy ; ELECTRON TEMPERATURE ; Electrons ; Gas pressure ; HELIUM ; Helium plasma ; LANGMUIR PROBE ; Low-Temperature Plasma ; Magnetic poles ; Maxwellian distribution ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; PLASMA ; PLASMA POTENTIAL ; Plasmas (physics)</subject><ispartof>Plasma physics reports, 2017-05, Vol.43 (5), p.588-593</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d27b23cbf0abfbd4fd501739ad0c14483d7f9c0fff49e2e575fadd537ae5dbda3</citedby><cites>FETCH-LOGICAL-c344t-d27b23cbf0abfbd4fd501739ad0c14483d7f9c0fff49e2e575fadd537ae5dbda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063780X17050105$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063780X17050105$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27913,27914,41477,42546,51308</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22760333$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Younus, Maria</creatorcontrib><creatorcontrib>Rehman, N. U.</creatorcontrib><creatorcontrib>Shafiq, M.</creatorcontrib><creatorcontrib>Naeem, M.</creatorcontrib><creatorcontrib>Zaka-ul-Islam, M.</creatorcontrib><creatorcontrib>Zakaullah, M.</creatorcontrib><title>Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma</title><title>Plasma physics reports</title><addtitle>Plasma Phys. Rep</addtitle><description>This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density
n
e
, electron temperature
T
e
, plasma potential
V
p
, skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Atomic</subject><subject>Electron energy</subject><subject>ELECTRON TEMPERATURE</subject><subject>Electrons</subject><subject>Gas pressure</subject><subject>HELIUM</subject><subject>Helium plasma</subject><subject>LANGMUIR PROBE</subject><subject>Low-Temperature Plasma</subject><subject>Magnetic poles</subject><subject>Maxwellian distribution</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PLASMA</subject><subject>PLASMA POTENTIAL</subject><subject>Plasmas (physics)</subject><issn>1063-780X</issn><issn>1562-6938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKBDEQDKLg-vgAbwHPo3lMJjtHWXzBgodV8BYyeexmmUnGJCPs35tlRQSxL910VxXVBcAVRjcY0_p2hVFD-Ry9Y44YwogdgRlmDamals6Py1zO1f5-Cs5S2iKE8ZzhGVgtpV8Pk4twjKEzMOVJ72CwUHrovJ5Udp-m30EVprE3Gg5y7U12qhpDbyrjN9Krst6Y3k0DHHuZBnkBTqzsk7n87ufg7eH-dfFULV8enxd3y0rRus6VJrwjVHUWyc52ura6GOe0lRopXNdzqrltFbLW1q0hhnFmpdaMcmmY7rSk5-D6oBtSdiIpl43aqOC9UVkQwhtES_2gyoMfk0lZbMMUfTEmcIsIZiUlVlD4gFIxpBSNFWN0g4w7gZHYJyz-JFw45MBJBevXJv5S_pf0BYtQfoQ</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Younus, Maria</creator><creator>Rehman, N. U.</creator><creator>Shafiq, M.</creator><creator>Naeem, M.</creator><creator>Zaka-ul-Islam, M.</creator><creator>Zakaullah, M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170501</creationdate><title>Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma</title><author>Younus, Maria ; Rehman, N. U. ; Shafiq, M. ; Naeem, M. ; Zaka-ul-Islam, M. ; Zakaullah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d27b23cbf0abfbd4fd501739ad0c14483d7f9c0fff49e2e575fadd537ae5dbda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Atomic</topic><topic>Electron energy</topic><topic>ELECTRON TEMPERATURE</topic><topic>Electrons</topic><topic>Gas pressure</topic><topic>HELIUM</topic><topic>Helium plasma</topic><topic>LANGMUIR PROBE</topic><topic>Low-Temperature Plasma</topic><topic>Magnetic poles</topic><topic>Maxwellian distribution</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PLASMA</topic><topic>PLASMA POTENTIAL</topic><topic>Plasmas (physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Younus, Maria</creatorcontrib><creatorcontrib>Rehman, N. U.</creatorcontrib><creatorcontrib>Shafiq, M.</creatorcontrib><creatorcontrib>Naeem, M.</creatorcontrib><creatorcontrib>Zaka-ul-Islam, M.</creatorcontrib><creatorcontrib>Zakaullah, M.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Plasma physics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Younus, Maria</au><au>Rehman, N. U.</au><au>Shafiq, M.</au><au>Naeem, M.</au><au>Zaka-ul-Islam, M.</au><au>Zakaullah, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma</atitle><jtitle>Plasma physics reports</jtitle><stitle>Plasma Phys. Rep</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>43</volume><issue>5</issue><spage>588</spage><epage>593</epage><pages>588-593</pages><issn>1063-780X</issn><eissn>1562-6938</eissn><abstract>This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density
n
e
, electron temperature
T
e
, plasma potential
V
p
, skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063780X17050105</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-780X |
ispartof | Plasma physics reports, 2017-05, Vol.43 (5), p.588-593 |
issn | 1063-780X 1562-6938 |
language | eng |
recordid | cdi_osti_scitechconnect_22760333 |
source | Springer Nature - Complete Springer Journals |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Atomic Electron energy ELECTRON TEMPERATURE Electrons Gas pressure HELIUM Helium plasma LANGMUIR PROBE Low-Temperature Plasma Magnetic poles Maxwellian distribution Molecular Optical and Plasma Physics Physics Physics and Astronomy PLASMA PLASMA POTENTIAL Plasmas (physics) |
title | Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Langmuir%20probe%20study%20of%20an%20inductively%20coupled%20magnetic-pole-enhanced%20helium%20plasma&rft.jtitle=Plasma%20physics%20reports&rft.au=Younus,%20Maria&rft.date=2017-05-01&rft.volume=43&rft.issue=5&rft.spage=588&rft.epage=593&rft.pages=588-593&rft.issn=1063-780X&rft.eissn=1562-6938&rft_id=info:doi/10.1134/S1063780X17050105&rft_dat=%3Cproquest_osti_%3E1902155625%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902155625&rft_id=info:pmid/&rfr_iscdi=true |