Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma

This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma physics reports 2017-05, Vol.43 (5), p.588-593
Hauptverfasser: Younus, Maria, Rehman, N. U., Shafiq, M., Naeem, M., Zaka-ul-Islam, M., Zakaullah, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue 5
container_start_page 588
container_title Plasma physics reports
container_volume 43
creator Younus, Maria
Rehman, N. U.
Shafiq, M.
Naeem, M.
Zaka-ul-Islam, M.
Zakaullah, M.
description This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.
doi_str_mv 10.1134/S1063780X17050105
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22760333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902155625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d27b23cbf0abfbd4fd501739ad0c14483d7f9c0fff49e2e575fadd537ae5dbda3</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLg-vgAbwHPo3lMJjtHWXzBgodV8BYyeexmmUnGJCPs35tlRQSxL910VxXVBcAVRjcY0_p2hVFD-Ry9Y44YwogdgRlmDamals6Py1zO1f5-Cs5S2iKE8ZzhGVgtpV8Pk4twjKEzMOVJ72CwUHrovJ5Udp-m30EVprE3Gg5y7U12qhpDbyrjN9Krst6Y3k0DHHuZBnkBTqzsk7n87ufg7eH-dfFULV8enxd3y0rRus6VJrwjVHUWyc52ura6GOe0lRopXNdzqrltFbLW1q0hhnFmpdaMcmmY7rSk5-D6oBtSdiIpl43aqOC9UVkQwhtES_2gyoMfk0lZbMMUfTEmcIsIZiUlVlD4gFIxpBSNFWN0g4w7gZHYJyz-JFw45MBJBevXJv5S_pf0BYtQfoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902155625</pqid></control><display><type>article</type><title>Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma</title><source>Springer Nature - Complete Springer Journals</source><creator>Younus, Maria ; Rehman, N. U. ; Shafiq, M. ; Naeem, M. ; Zaka-ul-Islam, M. ; Zakaullah, M.</creator><creatorcontrib>Younus, Maria ; Rehman, N. U. ; Shafiq, M. ; Naeem, M. ; Zaka-ul-Islam, M. ; Zakaullah, M.</creatorcontrib><description>This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.</description><identifier>ISSN: 1063-780X</identifier><identifier>EISSN: 1562-6938</identifier><identifier>DOI: 10.1134/S1063780X17050105</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Atomic ; Electron energy ; ELECTRON TEMPERATURE ; Electrons ; Gas pressure ; HELIUM ; Helium plasma ; LANGMUIR PROBE ; Low-Temperature Plasma ; Magnetic poles ; Maxwellian distribution ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; PLASMA ; PLASMA POTENTIAL ; Plasmas (physics)</subject><ispartof>Plasma physics reports, 2017-05, Vol.43 (5), p.588-593</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d27b23cbf0abfbd4fd501739ad0c14483d7f9c0fff49e2e575fadd537ae5dbda3</citedby><cites>FETCH-LOGICAL-c344t-d27b23cbf0abfbd4fd501739ad0c14483d7f9c0fff49e2e575fadd537ae5dbda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063780X17050105$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063780X17050105$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27913,27914,41477,42546,51308</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22760333$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Younus, Maria</creatorcontrib><creatorcontrib>Rehman, N. U.</creatorcontrib><creatorcontrib>Shafiq, M.</creatorcontrib><creatorcontrib>Naeem, M.</creatorcontrib><creatorcontrib>Zaka-ul-Islam, M.</creatorcontrib><creatorcontrib>Zakaullah, M.</creatorcontrib><title>Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma</title><title>Plasma physics reports</title><addtitle>Plasma Phys. Rep</addtitle><description>This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Atomic</subject><subject>Electron energy</subject><subject>ELECTRON TEMPERATURE</subject><subject>Electrons</subject><subject>Gas pressure</subject><subject>HELIUM</subject><subject>Helium plasma</subject><subject>LANGMUIR PROBE</subject><subject>Low-Temperature Plasma</subject><subject>Magnetic poles</subject><subject>Maxwellian distribution</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PLASMA</subject><subject>PLASMA POTENTIAL</subject><subject>Plasmas (physics)</subject><issn>1063-780X</issn><issn>1562-6938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKBDEQDKLg-vgAbwHPo3lMJjtHWXzBgodV8BYyeexmmUnGJCPs35tlRQSxL910VxXVBcAVRjcY0_p2hVFD-Ry9Y44YwogdgRlmDamals6Py1zO1f5-Cs5S2iKE8ZzhGVgtpV8Pk4twjKEzMOVJ72CwUHrovJ5Udp-m30EVprE3Gg5y7U12qhpDbyrjN9Krst6Y3k0DHHuZBnkBTqzsk7n87ufg7eH-dfFULV8enxd3y0rRus6VJrwjVHUWyc52ura6GOe0lRopXNdzqrltFbLW1q0hhnFmpdaMcmmY7rSk5-D6oBtSdiIpl43aqOC9UVkQwhtES_2gyoMfk0lZbMMUfTEmcIsIZiUlVlD4gFIxpBSNFWN0g4w7gZHYJyz-JFw45MBJBevXJv5S_pf0BYtQfoQ</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Younus, Maria</creator><creator>Rehman, N. U.</creator><creator>Shafiq, M.</creator><creator>Naeem, M.</creator><creator>Zaka-ul-Islam, M.</creator><creator>Zakaullah, M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170501</creationdate><title>Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma</title><author>Younus, Maria ; Rehman, N. U. ; Shafiq, M. ; Naeem, M. ; Zaka-ul-Islam, M. ; Zakaullah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d27b23cbf0abfbd4fd501739ad0c14483d7f9c0fff49e2e575fadd537ae5dbda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Atomic</topic><topic>Electron energy</topic><topic>ELECTRON TEMPERATURE</topic><topic>Electrons</topic><topic>Gas pressure</topic><topic>HELIUM</topic><topic>Helium plasma</topic><topic>LANGMUIR PROBE</topic><topic>Low-Temperature Plasma</topic><topic>Magnetic poles</topic><topic>Maxwellian distribution</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PLASMA</topic><topic>PLASMA POTENTIAL</topic><topic>Plasmas (physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Younus, Maria</creatorcontrib><creatorcontrib>Rehman, N. U.</creatorcontrib><creatorcontrib>Shafiq, M.</creatorcontrib><creatorcontrib>Naeem, M.</creatorcontrib><creatorcontrib>Zaka-ul-Islam, M.</creatorcontrib><creatorcontrib>Zakaullah, M.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Plasma physics reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Younus, Maria</au><au>Rehman, N. U.</au><au>Shafiq, M.</au><au>Naeem, M.</au><au>Zaka-ul-Islam, M.</au><au>Zakaullah, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma</atitle><jtitle>Plasma physics reports</jtitle><stitle>Plasma Phys. Rep</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>43</volume><issue>5</issue><spage>588</spage><epage>593</epage><pages>588-593</pages><issn>1063-780X</issn><eissn>1562-6938</eissn><abstract>This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063780X17050105</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-780X
ispartof Plasma physics reports, 2017-05, Vol.43 (5), p.588-593
issn 1063-780X
1562-6938
language eng
recordid cdi_osti_scitechconnect_22760333
source Springer Nature - Complete Springer Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Atomic
Electron energy
ELECTRON TEMPERATURE
Electrons
Gas pressure
HELIUM
Helium plasma
LANGMUIR PROBE
Low-Temperature Plasma
Magnetic poles
Maxwellian distribution
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
PLASMA
PLASMA POTENTIAL
Plasmas (physics)
title Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Langmuir%20probe%20study%20of%20an%20inductively%20coupled%20magnetic-pole-enhanced%20helium%20plasma&rft.jtitle=Plasma%20physics%20reports&rft.au=Younus,%20Maria&rft.date=2017-05-01&rft.volume=43&rft.issue=5&rft.spage=588&rft.epage=593&rft.pages=588-593&rft.issn=1063-780X&rft.eissn=1562-6938&rft_id=info:doi/10.1134/S1063780X17050105&rft_dat=%3Cproquest_osti_%3E1902155625%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902155625&rft_id=info:pmid/&rfr_iscdi=true