Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystallography reports 2017-07, Vol.62 (4), p.580-583
Hauptverfasser: Sinitsyna, E. V., Timofeev, V. I., Tuzova, E. S., Kostromina, M. A., Murav’eva, T. I., Esipov, R. S., Kuranova, I. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 583
container_issue 4
container_start_page 580
container_title Crystallography reports
container_volume 62
creator Sinitsyna, E. V.
Timofeev, V. I.
Tuzova, E. S.
Kostromina, M. A.
Murav’eva, T. I.
Esipov, R. S.
Kuranova, I. P.
description Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P12 1 1 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).
doi_str_mv 10.1134/S106377451704023X
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22758360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925233316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-1c85df7d47432b345891b33348e7b136decf3b6e1d2078ed87d46adc5836d9633</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSNUJNrCA7CzxDqtf5LYs4QRdJAqsaBIs4sc-5pxldjh2lmEN-ItcRgkKlUsruzr851jy7eq3jJ6w5hobr8y2gkpm5ZJ2lAuji-qS9Z2vO7U7nhR9kWuN_1VdZXSI6VUKdZcVr_2uKasx9H_1NnHQHSwZEYY_eSDxpUca9Qrsd451OYPkfJiVxIdQTBxGgoWMtEWgg9A5lNMpdAPMa1jRh2SA9QJiMM4kXyCrXCK88mP3pChhAL6ZSIP2_GSnsilSSXBB3L4wOXr6qXTY4I3f9fr6tunjw_7Q33_5e7z_v19bYRiuWZGtdZJ28hG8EE0rdqxQQjRKJADE50F48TQAbOcSgVWFbTT1rSqaLtOiOvq3Tk3puz7ZHwGczIxBDC551xuIP1HzRh_LJBy_xgXDOVhPdvxlpcbWVcodqYMxpQQXD-jn8q39oz229z6Z3MrHn72pMKG74BPkv9r-g28756V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925233316</pqid></control><display><type>article</type><title>Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27</title><source>SpringerLink Journals</source><creator>Sinitsyna, E. V. ; Timofeev, V. I. ; Tuzova, E. S. ; Kostromina, M. A. ; Murav’eva, T. I. ; Esipov, R. S. ; Kuranova, I. P.</creator><creatorcontrib>Sinitsyna, E. V. ; Timofeev, V. I. ; Tuzova, E. S. ; Kostromina, M. A. ; Murav’eva, T. I. ; Esipov, R. S. ; Kuranova, I. P.</creatorcontrib><description>Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P12 1 1 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).</description><identifier>ISSN: 1063-7745</identifier><identifier>EISSN: 1562-689X</identifier><identifier>DOI: 10.1134/S106377451704023X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>ADENINES ; ADENOSINE ; Adenosine monophosphate ; BACTERIA ; BIOSYNTHESIS ; CAPILLARIES ; Catalysts ; CHROMATOGRAPHY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystal growth ; CRYSTALLIZATION ; Crystallography and Scattering Methods ; CRYSTALS ; Diffraction ; DIFFUSION ; E coli ; ENZYMES ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; NITROGEN ; Nucleotides ; Physics ; Physics and Astronomy ; Proteins ; PYROPHOSPHATES ; Salvage ; SPRING-8 STORAGE RING ; STRAINS ; Structure of Macromolecular Compounds ; X-RAY DIFFRACTION ; Yeast</subject><ispartof>Crystallography reports, 2017-07, Vol.62 (4), p.580-583</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-1c85df7d47432b345891b33348e7b136decf3b6e1d2078ed87d46adc5836d9633</citedby><cites>FETCH-LOGICAL-c381t-1c85df7d47432b345891b33348e7b136decf3b6e1d2078ed87d46adc5836d9633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S106377451704023X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S106377451704023X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22758360$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinitsyna, E. V.</creatorcontrib><creatorcontrib>Timofeev, V. I.</creatorcontrib><creatorcontrib>Tuzova, E. S.</creatorcontrib><creatorcontrib>Kostromina, M. A.</creatorcontrib><creatorcontrib>Murav’eva, T. I.</creatorcontrib><creatorcontrib>Esipov, R. S.</creatorcontrib><creatorcontrib>Kuranova, I. P.</creatorcontrib><title>Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27</title><title>Crystallography reports</title><addtitle>Crystallogr. Rep</addtitle><description>Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P12 1 1 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).</description><subject>ADENINES</subject><subject>ADENOSINE</subject><subject>Adenosine monophosphate</subject><subject>BACTERIA</subject><subject>BIOSYNTHESIS</subject><subject>CAPILLARIES</subject><subject>Catalysts</subject><subject>CHROMATOGRAPHY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystal growth</subject><subject>CRYSTALLIZATION</subject><subject>Crystallography and Scattering Methods</subject><subject>CRYSTALS</subject><subject>Diffraction</subject><subject>DIFFUSION</subject><subject>E coli</subject><subject>ENZYMES</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>NITROGEN</subject><subject>Nucleotides</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Proteins</subject><subject>PYROPHOSPHATES</subject><subject>Salvage</subject><subject>SPRING-8 STORAGE RING</subject><subject>STRAINS</subject><subject>Structure of Macromolecular Compounds</subject><subject>X-RAY DIFFRACTION</subject><subject>Yeast</subject><issn>1063-7745</issn><issn>1562-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhSNUJNrCA7CzxDqtf5LYs4QRdJAqsaBIs4sc-5pxldjh2lmEN-ItcRgkKlUsruzr851jy7eq3jJ6w5hobr8y2gkpm5ZJ2lAuji-qS9Z2vO7U7nhR9kWuN_1VdZXSI6VUKdZcVr_2uKasx9H_1NnHQHSwZEYY_eSDxpUca9Qrsd451OYPkfJiVxIdQTBxGgoWMtEWgg9A5lNMpdAPMa1jRh2SA9QJiMM4kXyCrXCK88mP3pChhAL6ZSIP2_GSnsilSSXBB3L4wOXr6qXTY4I3f9fr6tunjw_7Q33_5e7z_v19bYRiuWZGtdZJ28hG8EE0rdqxQQjRKJADE50F48TQAbOcSgVWFbTT1rSqaLtOiOvq3Tk3puz7ZHwGczIxBDC551xuIP1HzRh_LJBy_xgXDOVhPdvxlpcbWVcodqYMxpQQXD-jn8q39oz229z6Z3MrHn72pMKG74BPkv9r-g28756V</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Sinitsyna, E. V.</creator><creator>Timofeev, V. I.</creator><creator>Tuzova, E. S.</creator><creator>Kostromina, M. A.</creator><creator>Murav’eva, T. I.</creator><creator>Esipov, R. S.</creator><creator>Kuranova, I. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170701</creationdate><title>Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27</title><author>Sinitsyna, E. V. ; Timofeev, V. I. ; Tuzova, E. S. ; Kostromina, M. A. ; Murav’eva, T. I. ; Esipov, R. S. ; Kuranova, I. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-1c85df7d47432b345891b33348e7b136decf3b6e1d2078ed87d46adc5836d9633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ADENINES</topic><topic>ADENOSINE</topic><topic>Adenosine monophosphate</topic><topic>BACTERIA</topic><topic>BIOSYNTHESIS</topic><topic>CAPILLARIES</topic><topic>Catalysts</topic><topic>CHROMATOGRAPHY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystal growth</topic><topic>CRYSTALLIZATION</topic><topic>Crystallography and Scattering Methods</topic><topic>CRYSTALS</topic><topic>Diffraction</topic><topic>DIFFUSION</topic><topic>E coli</topic><topic>ENZYMES</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>NITROGEN</topic><topic>Nucleotides</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Proteins</topic><topic>PYROPHOSPHATES</topic><topic>Salvage</topic><topic>SPRING-8 STORAGE RING</topic><topic>STRAINS</topic><topic>Structure of Macromolecular Compounds</topic><topic>X-RAY DIFFRACTION</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinitsyna, E. V.</creatorcontrib><creatorcontrib>Timofeev, V. I.</creatorcontrib><creatorcontrib>Tuzova, E. S.</creatorcontrib><creatorcontrib>Kostromina, M. A.</creatorcontrib><creatorcontrib>Murav’eva, T. I.</creatorcontrib><creatorcontrib>Esipov, R. S.</creatorcontrib><creatorcontrib>Kuranova, I. P.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Crystallography reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinitsyna, E. V.</au><au>Timofeev, V. I.</au><au>Tuzova, E. S.</au><au>Kostromina, M. A.</au><au>Murav’eva, T. I.</au><au>Esipov, R. S.</au><au>Kuranova, I. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27</atitle><jtitle>Crystallography reports</jtitle><stitle>Crystallogr. Rep</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>62</volume><issue>4</issue><spage>580</spage><epage>583</epage><pages>580-583</pages><issn>1063-7745</issn><eissn>1562-689X</eissn><abstract>Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P12 1 1 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S106377451704023X</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7745
ispartof Crystallography reports, 2017-07, Vol.62 (4), p.580-583
issn 1063-7745
1562-689X
language eng
recordid cdi_osti_scitechconnect_22758360
source SpringerLink Journals
subjects ADENINES
ADENOSINE
Adenosine monophosphate
BACTERIA
BIOSYNTHESIS
CAPILLARIES
Catalysts
CHROMATOGRAPHY
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Crystal growth
CRYSTALLIZATION
Crystallography and Scattering Methods
CRYSTALS
Diffraction
DIFFUSION
E coli
ENZYMES
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
NITROGEN
Nucleotides
Physics
Physics and Astronomy
Proteins
PYROPHOSPHATES
Salvage
SPRING-8 STORAGE RING
STRAINS
Structure of Macromolecular Compounds
X-RAY DIFFRACTION
Yeast
title Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallization%20and%20preliminary%20X-ray%20diffraction%20study%20of%20recombinant%20adenine%20phosphoribosyltransferase%20from%20the%20thermophilic%20bacterium%20Thermus%20thermophilus%20strain%20HB27&rft.jtitle=Crystallography%20reports&rft.au=Sinitsyna,%20E.%20V.&rft.date=2017-07-01&rft.volume=62&rft.issue=4&rft.spage=580&rft.epage=583&rft.pages=580-583&rft.issn=1063-7745&rft.eissn=1562-689X&rft_id=info:doi/10.1134/S106377451704023X&rft_dat=%3Cproquest_osti_%3E1925233316%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925233316&rft_id=info:pmid/&rfr_iscdi=true