Modeling of the structure of ribosomal protein L1 from the archaeon Haloarcula marismortui

The halophilic archaeon Haloarcula marismortui proliferates in the Dead Sea at extremely high salt concentrations (higher than 3 M). This is the only archaeon, for which the crystal structure of the ribosomal 50S subunit was determined. However, the structure of the functionally important side protu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystallography reports 2017-07, Vol.62 (4), p.584-588
Hauptverfasser: Nevskaya, N. A., Kljashtorny, V. G., Vakhrusheva, A. V., Garber, M. B., Nikonov, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 4
container_start_page 584
container_title Crystallography reports
container_volume 62
creator Nevskaya, N. A.
Kljashtorny, V. G.
Vakhrusheva, A. V.
Garber, M. B.
Nikonov, S. V.
description The halophilic archaeon Haloarcula marismortui proliferates in the Dead Sea at extremely high salt concentrations (higher than 3 M). This is the only archaeon, for which the crystal structure of the ribosomal 50S subunit was determined. However, the structure of the functionally important side protuberance containing the abnormally negatively charged protein L1 (HmaL1) was not visualized. Attempts to crystallize HmaL1 in the isolated state or as its complex with RNA using normal salt concentrations (≤500 mM) failed. A theoretical model of HmaL1 was built based on the structural data for homologs of the protein L1 from other organisms, and this model was refined by molecular dynamics methods. Analysis of this model showed that the protein HmaL1 can undergo aggregation due to the presence of a cluster of positive charges unique for proteins L1. This cluster is located at the RNA–protein interface, which interferes with the crystallization of HmaL1 and the binding of the latter to RNA.
doi_str_mv 10.1134/S1063774517040137
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22758359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925233467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d49d2e09c73a90317dcc31128837680992e304ff59dbb159057d5c3081e036b23</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AG8Bz9VMpmmaoyzqCiseVBAvoU3T3SzdZk3Sg__erCsoiKf5et6Xmcmyc6CXAFhcPQEtUYiCg6AFBRQH2QR4yfKykq-HKU_jfDc_zk5CWFNKqwqKSfb24FrT22FJXEfiypAQ_ajj6M2u4W3jgtvUPdl6F40dyAJI593mC629XtXGDWRe9y4VY1-TTe1t2DgfR3uaHXV1H8zZd5xmL7c3z7N5vni8u59dL3KNiDFvC9kyQ6UWWEuKIFqtEYBVFYqyolIyg7ToOi7bpgEuKRct10grMBTLhuE0u9j7uhCtCtpGo1faDYPRUTEmeIVc_lDpkvfRhKjWbvRDWkyBZJwhFqVIFOwp7V0I3nRq62266UMBVbtHqz-PThq214TEDkvjfzn_K_oE1wZ90g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925233467</pqid></control><display><type>article</type><title>Modeling of the structure of ribosomal protein L1 from the archaeon Haloarcula marismortui</title><source>SpringerNature Journals</source><creator>Nevskaya, N. A. ; Kljashtorny, V. G. ; Vakhrusheva, A. V. ; Garber, M. B. ; Nikonov, S. V.</creator><creatorcontrib>Nevskaya, N. A. ; Kljashtorny, V. G. ; Vakhrusheva, A. V. ; Garber, M. B. ; Nikonov, S. V.</creatorcontrib><description>The halophilic archaeon Haloarcula marismortui proliferates in the Dead Sea at extremely high salt concentrations (higher than 3 M). This is the only archaeon, for which the crystal structure of the ribosomal 50S subunit was determined. However, the structure of the functionally important side protuberance containing the abnormally negatively charged protein L1 (HmaL1) was not visualized. Attempts to crystallize HmaL1 in the isolated state or as its complex with RNA using normal salt concentrations (≤500 mM) failed. A theoretical model of HmaL1 was built based on the structural data for homologs of the protein L1 from other organisms, and this model was refined by molecular dynamics methods. Analysis of this model showed that the protein HmaL1 can undergo aggregation due to the presence of a cluster of positive charges unique for proteins L1. This cluster is located at the RNA–protein interface, which interferes with the crystallization of HmaL1 and the binding of the latter to RNA.</description><identifier>ISSN: 1063-7745</identifier><identifier>EISSN: 1562-689X</identifier><identifier>DOI: 10.1134/S1063774517040137</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>AGGLOMERATION ; Clusters ; COMPUTERIZED SIMULATION ; CONCENTRATION RATIO ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRYSTAL STRUCTURE ; CRYSTALLIZATION ; Crystallography and Scattering Methods ; DEAD SEA ; Homology ; Molecular dynamics ; MOLECULAR DYNAMICS METHOD ; Physics ; Physics and Astronomy ; PROTEINS ; Ribonucleic acid ; RNA ; SALTS ; Structure of Macromolecular Compounds</subject><ispartof>Crystallography reports, 2017-07, Vol.62 (4), p.584-588</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c333t-d49d2e09c73a90317dcc31128837680992e304ff59dbb159057d5c3081e036b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063774517040137$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063774517040137$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22758359$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nevskaya, N. A.</creatorcontrib><creatorcontrib>Kljashtorny, V. G.</creatorcontrib><creatorcontrib>Vakhrusheva, A. V.</creatorcontrib><creatorcontrib>Garber, M. B.</creatorcontrib><creatorcontrib>Nikonov, S. V.</creatorcontrib><title>Modeling of the structure of ribosomal protein L1 from the archaeon Haloarcula marismortui</title><title>Crystallography reports</title><addtitle>Crystallogr. Rep</addtitle><description>The halophilic archaeon Haloarcula marismortui proliferates in the Dead Sea at extremely high salt concentrations (higher than 3 M). This is the only archaeon, for which the crystal structure of the ribosomal 50S subunit was determined. However, the structure of the functionally important side protuberance containing the abnormally negatively charged protein L1 (HmaL1) was not visualized. Attempts to crystallize HmaL1 in the isolated state or as its complex with RNA using normal salt concentrations (≤500 mM) failed. A theoretical model of HmaL1 was built based on the structural data for homologs of the protein L1 from other organisms, and this model was refined by molecular dynamics methods. Analysis of this model showed that the protein HmaL1 can undergo aggregation due to the presence of a cluster of positive charges unique for proteins L1. This cluster is located at the RNA–protein interface, which interferes with the crystallization of HmaL1 and the binding of the latter to RNA.</description><subject>AGGLOMERATION</subject><subject>Clusters</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONCENTRATION RATIO</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRYSTAL STRUCTURE</subject><subject>CRYSTALLIZATION</subject><subject>Crystallography and Scattering Methods</subject><subject>DEAD SEA</subject><subject>Homology</subject><subject>Molecular dynamics</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PROTEINS</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>SALTS</subject><subject>Structure of Macromolecular Compounds</subject><issn>1063-7745</issn><issn>1562-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhosouK7-AG8Bz9VMpmmaoyzqCiseVBAvoU3T3SzdZk3Sg__erCsoiKf5et6Xmcmyc6CXAFhcPQEtUYiCg6AFBRQH2QR4yfKykq-HKU_jfDc_zk5CWFNKqwqKSfb24FrT22FJXEfiypAQ_ajj6M2u4W3jgtvUPdl6F40dyAJI593mC629XtXGDWRe9y4VY1-TTe1t2DgfR3uaHXV1H8zZd5xmL7c3z7N5vni8u59dL3KNiDFvC9kyQ6UWWEuKIFqtEYBVFYqyolIyg7ToOi7bpgEuKRct10grMBTLhuE0u9j7uhCtCtpGo1faDYPRUTEmeIVc_lDpkvfRhKjWbvRDWkyBZJwhFqVIFOwp7V0I3nRq62266UMBVbtHqz-PThq214TEDkvjfzn_K_oE1wZ90g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Nevskaya, N. A.</creator><creator>Kljashtorny, V. G.</creator><creator>Vakhrusheva, A. V.</creator><creator>Garber, M. B.</creator><creator>Nikonov, S. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170701</creationdate><title>Modeling of the structure of ribosomal protein L1 from the archaeon Haloarcula marismortui</title><author>Nevskaya, N. A. ; Kljashtorny, V. G. ; Vakhrusheva, A. V. ; Garber, M. B. ; Nikonov, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d49d2e09c73a90317dcc31128837680992e304ff59dbb159057d5c3081e036b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>AGGLOMERATION</topic><topic>Clusters</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONCENTRATION RATIO</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRYSTAL STRUCTURE</topic><topic>CRYSTALLIZATION</topic><topic>Crystallography and Scattering Methods</topic><topic>DEAD SEA</topic><topic>Homology</topic><topic>Molecular dynamics</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PROTEINS</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>SALTS</topic><topic>Structure of Macromolecular Compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nevskaya, N. A.</creatorcontrib><creatorcontrib>Kljashtorny, V. G.</creatorcontrib><creatorcontrib>Vakhrusheva, A. V.</creatorcontrib><creatorcontrib>Garber, M. B.</creatorcontrib><creatorcontrib>Nikonov, S. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Crystallography reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nevskaya, N. A.</au><au>Kljashtorny, V. G.</au><au>Vakhrusheva, A. V.</au><au>Garber, M. B.</au><au>Nikonov, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of the structure of ribosomal protein L1 from the archaeon Haloarcula marismortui</atitle><jtitle>Crystallography reports</jtitle><stitle>Crystallogr. Rep</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>62</volume><issue>4</issue><spage>584</spage><epage>588</epage><pages>584-588</pages><issn>1063-7745</issn><eissn>1562-689X</eissn><abstract>The halophilic archaeon Haloarcula marismortui proliferates in the Dead Sea at extremely high salt concentrations (higher than 3 M). This is the only archaeon, for which the crystal structure of the ribosomal 50S subunit was determined. However, the structure of the functionally important side protuberance containing the abnormally negatively charged protein L1 (HmaL1) was not visualized. Attempts to crystallize HmaL1 in the isolated state or as its complex with RNA using normal salt concentrations (≤500 mM) failed. A theoretical model of HmaL1 was built based on the structural data for homologs of the protein L1 from other organisms, and this model was refined by molecular dynamics methods. Analysis of this model showed that the protein HmaL1 can undergo aggregation due to the presence of a cluster of positive charges unique for proteins L1. This cluster is located at the RNA–protein interface, which interferes with the crystallization of HmaL1 and the binding of the latter to RNA.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063774517040137</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7745
ispartof Crystallography reports, 2017-07, Vol.62 (4), p.584-588
issn 1063-7745
1562-689X
language eng
recordid cdi_osti_scitechconnect_22758359
source SpringerNature Journals
subjects AGGLOMERATION
Clusters
COMPUTERIZED SIMULATION
CONCENTRATION RATIO
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRYSTAL STRUCTURE
CRYSTALLIZATION
Crystallography and Scattering Methods
DEAD SEA
Homology
Molecular dynamics
MOLECULAR DYNAMICS METHOD
Physics
Physics and Astronomy
PROTEINS
Ribonucleic acid
RNA
SALTS
Structure of Macromolecular Compounds
title Modeling of the structure of ribosomal protein L1 from the archaeon Haloarcula marismortui
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20the%20structure%20of%20ribosomal%20protein%20L1%20from%20the%20archaeon%20Haloarcula%20marismortui&rft.jtitle=Crystallography%20reports&rft.au=Nevskaya,%20N.%20A.&rft.date=2017-07-01&rft.volume=62&rft.issue=4&rft.spage=584&rft.epage=588&rft.pages=584-588&rft.issn=1063-7745&rft.eissn=1562-689X&rft_id=info:doi/10.1134/S1063774517040137&rft_dat=%3Cproquest_osti_%3E1925233467%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925233467&rft_id=info:pmid/&rfr_iscdi=true