Conductance distribution near the Anderson transition

Using a modification of the Shapiro approach, we introduce the two-parameter family of conductance distributions W ( g ), defined by simple differential equations, which are in the one-to-one correspondence with conductance distributions for quasi-one-dimensional systems of size L d –1 × L z , chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental and theoretical physics 2017-05, Vol.124 (5), p.763-778
1. Verfasser: Suslov, I. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 778
container_issue 5
container_start_page 763
container_title Journal of experimental and theoretical physics
container_volume 124
creator Suslov, I. M.
description Using a modification of the Shapiro approach, we introduce the two-parameter family of conductance distributions W ( g ), defined by simple differential equations, which are in the one-to-one correspondence with conductance distributions for quasi-one-dimensional systems of size L d –1 × L z , characterizing by parameters L /ξ and L z / L (ξ is the correlation length, d is the dimension of space). This family contains the Gaussian and log-normal distributions, typical for the metallic and localized phases. For a certain choice of parameters, we reproduce the results for the cumulants of conductance in the space dimension d = 2 + ϵ obtained in the framework of the σ-model approach. The universal property of distributions is existence of two asymptotic regimes, log-normal for small g and exponential for large g. In the metallic phase they refer to remote tails, in the critical region they determine practically all distribution, in the localized phase the former asymptotics forces out the latter. A singularity at g = 1, discovered in numerical experiments, is admissible in the framework of their calculational scheme, but related with a deficient definition of conductance. Apart of this singularity, the critical distribution for d = 3 is well described by the present theory. One-parameter scaling for the whole distribution takes place under condition, that two independent parameters characterizing this distribution are functions of the ratio L /ξ.
doi_str_mv 10.1134/S1063776117020170
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22756480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499494342</galeid><sourcerecordid>A499494342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-a96d88daaa8ddc97b95a6b44c4c6563c344149bfea34e8330fb7bc1b35aec71a3</originalsourceid><addsrcrecordid>eNp1kd9LwzAQgIMoOKd_gG8Dn3zoTJo0aR7H8MdgIDh9Dml63TK2dCYp6H9vSgUdIoHkuPu-48IhdE3wlBDK7lYEcyoEJ0TgHKfrBI0IljjjBZanfcxp1tfP0UUIW4xxmWM5QsW8dXVnonYGJrUN0duqi7Z1EwfaT-IGJjNXgw8pE712wfbFS3TW6F2Aq-93jN4e7l_nT9ny-XExny0zw4iImZa8Lstaa13WtZGikoXmFWOGGV5waihjhMmqAU0ZlJTiphKVIRUtNBhBNB2jm6FvG6JVwdgIZmNa58BEleei4KzEP9TBt-8dhKi2beddGkwRSXLOsaBloqYDtdY7UNY1bfqPSaeGvU09obEpP2NSMskoy5NweyQkJsJHXOsuBLVYvRyzZGCNb0Pw0KiDt3vtPxXBql-Q-rOg5OSDExLr1uB_jf2v9AU3KY_d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912660738</pqid></control><display><type>article</type><title>Conductance distribution near the Anderson transition</title><source>SpringerLink Journals</source><creator>Suslov, I. M.</creator><creatorcontrib>Suslov, I. M.</creatorcontrib><description>Using a modification of the Shapiro approach, we introduce the two-parameter family of conductance distributions W ( g ), defined by simple differential equations, which are in the one-to-one correspondence with conductance distributions for quasi-one-dimensional systems of size L d –1 × L z , characterizing by parameters L /ξ and L z / L (ξ is the correlation length, d is the dimension of space). This family contains the Gaussian and log-normal distributions, typical for the metallic and localized phases. For a certain choice of parameters, we reproduce the results for the cumulants of conductance in the space dimension d = 2 + ϵ obtained in the framework of the σ-model approach. The universal property of distributions is existence of two asymptotic regimes, log-normal for small g and exponential for large g. In the metallic phase they refer to remote tails, in the critical region they determine practically all distribution, in the localized phase the former asymptotics forces out the latter. A singularity at g = 1, discovered in numerical experiments, is admissible in the framework of their calculational scheme, but related with a deficient definition of conductance. Apart of this singularity, the critical distribution for d = 3 is well described by the present theory. One-parameter scaling for the whole distribution takes place under condition, that two independent parameters characterizing this distribution are functions of the ratio L /ξ.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776117020170</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic properties ; ASYMPTOTIC SOLUTIONS ; Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFERENTIAL EQUATIONS ; Disorder ; DISTRIBUTION ; Elementary Particles ; Mathematical models ; MATHEMATICAL OPERATORS ; Order ; Particle and Nuclear Physics ; Phase Transition in Condensed System ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Resistance ; Scaling ; Solid State Physics ; Stress concentration</subject><ispartof>Journal of experimental and theoretical physics, 2017-05, Vol.124 (5), p.763-778</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-a96d88daaa8ddc97b95a6b44c4c6563c344149bfea34e8330fb7bc1b35aec71a3</citedby><cites>FETCH-LOGICAL-c417t-a96d88daaa8ddc97b95a6b44c4c6563c344149bfea34e8330fb7bc1b35aec71a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776117020170$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776117020170$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22756480$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Suslov, I. M.</creatorcontrib><title>Conductance distribution near the Anderson transition</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>Using a modification of the Shapiro approach, we introduce the two-parameter family of conductance distributions W ( g ), defined by simple differential equations, which are in the one-to-one correspondence with conductance distributions for quasi-one-dimensional systems of size L d –1 × L z , characterizing by parameters L /ξ and L z / L (ξ is the correlation length, d is the dimension of space). This family contains the Gaussian and log-normal distributions, typical for the metallic and localized phases. For a certain choice of parameters, we reproduce the results for the cumulants of conductance in the space dimension d = 2 + ϵ obtained in the framework of the σ-model approach. The universal property of distributions is existence of two asymptotic regimes, log-normal for small g and exponential for large g. In the metallic phase they refer to remote tails, in the critical region they determine practically all distribution, in the localized phase the former asymptotics forces out the latter. A singularity at g = 1, discovered in numerical experiments, is admissible in the framework of their calculational scheme, but related with a deficient definition of conductance. Apart of this singularity, the critical distribution for d = 3 is well described by the present theory. One-parameter scaling for the whole distribution takes place under condition, that two independent parameters characterizing this distribution are functions of the ratio L /ξ.</description><subject>Asymptotic properties</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>Disorder</subject><subject>DISTRIBUTION</subject><subject>Elementary Particles</subject><subject>Mathematical models</subject><subject>MATHEMATICAL OPERATORS</subject><subject>Order</subject><subject>Particle and Nuclear Physics</subject><subject>Phase Transition in Condensed System</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Resistance</subject><subject>Scaling</subject><subject>Solid State Physics</subject><subject>Stress concentration</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kd9LwzAQgIMoOKd_gG8Dn3zoTJo0aR7H8MdgIDh9Dml63TK2dCYp6H9vSgUdIoHkuPu-48IhdE3wlBDK7lYEcyoEJ0TgHKfrBI0IljjjBZanfcxp1tfP0UUIW4xxmWM5QsW8dXVnonYGJrUN0duqi7Z1EwfaT-IGJjNXgw8pE712wfbFS3TW6F2Aq-93jN4e7l_nT9ny-XExny0zw4iImZa8Lstaa13WtZGikoXmFWOGGV5waihjhMmqAU0ZlJTiphKVIRUtNBhBNB2jm6FvG6JVwdgIZmNa58BEleei4KzEP9TBt-8dhKi2beddGkwRSXLOsaBloqYDtdY7UNY1bfqPSaeGvU09obEpP2NSMskoy5NweyQkJsJHXOsuBLVYvRyzZGCNb0Pw0KiDt3vtPxXBql-Q-rOg5OSDExLr1uB_jf2v9AU3KY_d</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Suslov, I. M.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20170501</creationdate><title>Conductance distribution near the Anderson transition</title><author>Suslov, I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-a96d88daaa8ddc97b95a6b44c4c6563c344149bfea34e8330fb7bc1b35aec71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic properties</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>Disorder</topic><topic>DISTRIBUTION</topic><topic>Elementary Particles</topic><topic>Mathematical models</topic><topic>MATHEMATICAL OPERATORS</topic><topic>Order</topic><topic>Particle and Nuclear Physics</topic><topic>Phase Transition in Condensed System</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Resistance</topic><topic>Scaling</topic><topic>Solid State Physics</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suslov, I. M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suslov, I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductance distribution near the Anderson transition</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>124</volume><issue>5</issue><spage>763</spage><epage>778</epage><pages>763-778</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>Using a modification of the Shapiro approach, we introduce the two-parameter family of conductance distributions W ( g ), defined by simple differential equations, which are in the one-to-one correspondence with conductance distributions for quasi-one-dimensional systems of size L d –1 × L z , characterizing by parameters L /ξ and L z / L (ξ is the correlation length, d is the dimension of space). This family contains the Gaussian and log-normal distributions, typical for the metallic and localized phases. For a certain choice of parameters, we reproduce the results for the cumulants of conductance in the space dimension d = 2 + ϵ obtained in the framework of the σ-model approach. The universal property of distributions is existence of two asymptotic regimes, log-normal for small g and exponential for large g. In the metallic phase they refer to remote tails, in the critical region they determine practically all distribution, in the localized phase the former asymptotics forces out the latter. A singularity at g = 1, discovered in numerical experiments, is admissible in the framework of their calculational scheme, but related with a deficient definition of conductance. Apart of this singularity, the critical distribution for d = 3 is well described by the present theory. One-parameter scaling for the whole distribution takes place under condition, that two independent parameters characterizing this distribution are functions of the ratio L /ξ.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776117020170</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2017-05, Vol.124 (5), p.763-778
issn 1063-7761
1090-6509
language eng
recordid cdi_osti_scitechconnect_22756480
source SpringerLink Journals
subjects Asymptotic properties
ASYMPTOTIC SOLUTIONS
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DIFFERENTIAL EQUATIONS
Disorder
DISTRIBUTION
Elementary Particles
Mathematical models
MATHEMATICAL OPERATORS
Order
Particle and Nuclear Physics
Phase Transition in Condensed System
Physics
Physics and Astronomy
Quantum Field Theory
Relativity Theory
Resistance
Scaling
Solid State Physics
Stress concentration
title Conductance distribution near the Anderson transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductance%20distribution%20near%20the%20Anderson%20transition&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Suslov,%20I.%20M.&rft.date=2017-05-01&rft.volume=124&rft.issue=5&rft.spage=763&rft.epage=778&rft.pages=763-778&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776117020170&rft_dat=%3Cgale_osti_%3EA499494342%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912660738&rft_id=info:pmid/&rft_galeid=A499494342&rfr_iscdi=true