Role of critical fluctuations in the formation of a skyrmion lattice in MnSi
The region in the H – T phase diagram near the critical temperature ( T c ) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field H is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2017-11, Vol.125 (5), p.789-797 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 797 |
---|---|
container_issue | 5 |
container_start_page | 789 |
container_title | Journal of experimental and theoretical physics |
container_volume | 125 |
creator | Chubova, N. M. Moskvin, E. V. Dyad’kin, V. A. Dewhurst, Ch Maleev, S. V. Grigor’ev, S. V. |
description | The region in the
H
–
T
phase diagram near the critical temperature (
T
c
) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field
H
is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector
k
f
, (b) conical structure with
k
c
ǁ
H
, and (c) hexagonal skyrmion lattice with
k
sk
⊥
H
. Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature
T
c
= 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral
d
s
. The skyrmion lattice is localized near
T
c
and is related to the fluctuations of a spiral with correlation length ξ ≈ 2
d
s
, and the propagation vector is normal to the field (
k
sk
⊥
H
). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation. |
doi_str_mv | 10.1134/S1063776117100119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22756285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976030105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-b2a368c265d802f33fab8c0d9da56ae8c8e88bfbe5b63912245a3cdaca4542433</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19WbpEnTpQy-YERwdB3SNHEydpoxSRfz722toCCu7us7h8tB6BzDJca0uFph4LQsOcYlBsC4OkAzDBXknEF1OPac5uP9GJ3EuAEAQaCaoeWzb03mbaaDS06rNrNtr1OvkvNdzFyXpbXJrA_br81Iqiy-78N2nFqVBpEZscdu5U7RkVVtNGffdY5eb29eFvf58unuYXG9zDUtipTXRFEuNOGsEUAspVbVQkNTNYpxZYQWRoja1obVnFaYkIIpqhulVcEKUlA6RxeTr4_JyahdMnqtfdcZnSQhJeNEsB9qF_xHb2KSG9-HbnhM4qrkQAHDSOGJ0sHHGIyVu-C2KuwlBjlGK_9EO2jIpIkD272Z8Mv5X9EnLoh5ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976030105</pqid></control><display><type>article</type><title>Role of critical fluctuations in the formation of a skyrmion lattice in MnSi</title><source>SpringerNature Journals</source><creator>Chubova, N. M. ; Moskvin, E. V. ; Dyad’kin, V. A. ; Dewhurst, Ch ; Maleev, S. V. ; Grigor’ev, S. V.</creator><creatorcontrib>Chubova, N. M. ; Moskvin, E. V. ; Dyad’kin, V. A. ; Dewhurst, Ch ; Maleev, S. V. ; Grigor’ev, S. V.</creatorcontrib><description>The region in the
H
–
T
phase diagram near the critical temperature (
T
c
) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field
H
is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector
k
f
, (b) conical structure with
k
c
ǁ
H
, and (c) hexagonal skyrmion lattice with
k
sk
⊥
H
. Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature
T
c
= 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral
d
s
. The skyrmion lattice is localized near
T
c
and is related to the fluctuations of a spiral with correlation length ξ ≈ 2
d
s
, and the propagation vector is normal to the field (
k
sk
⊥
H
). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776117100119</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CRITICAL TEMPERATURE ; Defects ; Disorder ; Elementary Particles ; FLUCTUATIONS ; MAGNETIC FIELDS ; MAGNETS ; MANGANESE SILICIDES ; NEUTRON DIFFRACTION ; Order ; Particle and Nuclear Physics ; PHASE DIAGRAMS ; Phase Transition in Condensed System ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; SKYRME POTENTIAL ; Solid State Physics ; SOLITONS ; Transition temperature ; Variation</subject><ispartof>Journal of experimental and theoretical physics, 2017-11, Vol.125 (5), p.789-797</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-b2a368c265d802f33fab8c0d9da56ae8c8e88bfbe5b63912245a3cdaca4542433</citedby><cites>FETCH-LOGICAL-c344t-b2a368c265d802f33fab8c0d9da56ae8c8e88bfbe5b63912245a3cdaca4542433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776117100119$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776117100119$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22756285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chubova, N. M.</creatorcontrib><creatorcontrib>Moskvin, E. V.</creatorcontrib><creatorcontrib>Dyad’kin, V. A.</creatorcontrib><creatorcontrib>Dewhurst, Ch</creatorcontrib><creatorcontrib>Maleev, S. V.</creatorcontrib><creatorcontrib>Grigor’ev, S. V.</creatorcontrib><title>Role of critical fluctuations in the formation of a skyrmion lattice in MnSi</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>The region in the
H
–
T
phase diagram near the critical temperature (
T
c
) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field
H
is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector
k
f
, (b) conical structure with
k
c
ǁ
H
, and (c) hexagonal skyrmion lattice with
k
sk
⊥
H
. Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature
T
c
= 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral
d
s
. The skyrmion lattice is localized near
T
c
and is related to the fluctuations of a spiral with correlation length ξ ≈ 2
d
s
, and the propagation vector is normal to the field (
k
sk
⊥
H
). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.</description><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CRITICAL TEMPERATURE</subject><subject>Defects</subject><subject>Disorder</subject><subject>Elementary Particles</subject><subject>FLUCTUATIONS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETS</subject><subject>MANGANESE SILICIDES</subject><subject>NEUTRON DIFFRACTION</subject><subject>Order</subject><subject>Particle and Nuclear Physics</subject><subject>PHASE DIAGRAMS</subject><subject>Phase Transition in Condensed System</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>SKYRME POTENTIAL</subject><subject>Solid State Physics</subject><subject>SOLITONS</subject><subject>Transition temperature</subject><subject>Variation</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19WbpEnTpQy-YERwdB3SNHEydpoxSRfz722toCCu7us7h8tB6BzDJca0uFph4LQsOcYlBsC4OkAzDBXknEF1OPac5uP9GJ3EuAEAQaCaoeWzb03mbaaDS06rNrNtr1OvkvNdzFyXpbXJrA_br81Iqiy-78N2nFqVBpEZscdu5U7RkVVtNGffdY5eb29eFvf58unuYXG9zDUtipTXRFEuNOGsEUAspVbVQkNTNYpxZYQWRoja1obVnFaYkIIpqhulVcEKUlA6RxeTr4_JyahdMnqtfdcZnSQhJeNEsB9qF_xHb2KSG9-HbnhM4qrkQAHDSOGJ0sHHGIyVu-C2KuwlBjlGK_9EO2jIpIkD272Z8Mv5X9EnLoh5ew</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Chubova, N. M.</creator><creator>Moskvin, E. V.</creator><creator>Dyad’kin, V. A.</creator><creator>Dewhurst, Ch</creator><creator>Maleev, S. V.</creator><creator>Grigor’ev, S. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20171101</creationdate><title>Role of critical fluctuations in the formation of a skyrmion lattice in MnSi</title><author>Chubova, N. M. ; Moskvin, E. V. ; Dyad’kin, V. A. ; Dewhurst, Ch ; Maleev, S. V. ; Grigor’ev, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-b2a368c265d802f33fab8c0d9da56ae8c8e88bfbe5b63912245a3cdaca4542433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CRITICAL TEMPERATURE</topic><topic>Defects</topic><topic>Disorder</topic><topic>Elementary Particles</topic><topic>FLUCTUATIONS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETS</topic><topic>MANGANESE SILICIDES</topic><topic>NEUTRON DIFFRACTION</topic><topic>Order</topic><topic>Particle and Nuclear Physics</topic><topic>PHASE DIAGRAMS</topic><topic>Phase Transition in Condensed System</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>SKYRME POTENTIAL</topic><topic>Solid State Physics</topic><topic>SOLITONS</topic><topic>Transition temperature</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chubova, N. M.</creatorcontrib><creatorcontrib>Moskvin, E. V.</creatorcontrib><creatorcontrib>Dyad’kin, V. A.</creatorcontrib><creatorcontrib>Dewhurst, Ch</creatorcontrib><creatorcontrib>Maleev, S. V.</creatorcontrib><creatorcontrib>Grigor’ev, S. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chubova, N. M.</au><au>Moskvin, E. V.</au><au>Dyad’kin, V. A.</au><au>Dewhurst, Ch</au><au>Maleev, S. V.</au><au>Grigor’ev, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of critical fluctuations in the formation of a skyrmion lattice in MnSi</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>125</volume><issue>5</issue><spage>789</spage><epage>797</epage><pages>789-797</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>The region in the
H
–
T
phase diagram near the critical temperature (
T
c
) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field
H
is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector
k
f
, (b) conical structure with
k
c
ǁ
H
, and (c) hexagonal skyrmion lattice with
k
sk
⊥
H
. Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature
T
c
= 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral
d
s
. The skyrmion lattice is localized near
T
c
and is related to the fluctuations of a spiral with correlation length ξ ≈ 2
d
s
, and the propagation vector is normal to the field (
k
sk
⊥
H
). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776117100119</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2017-11, Vol.125 (5), p.789-797 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_osti_scitechconnect_22756285 |
source | SpringerNature Journals |
subjects | Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CRITICAL TEMPERATURE Defects Disorder Elementary Particles FLUCTUATIONS MAGNETIC FIELDS MAGNETS MANGANESE SILICIDES NEUTRON DIFFRACTION Order Particle and Nuclear Physics PHASE DIAGRAMS Phase Transition in Condensed System Physics Physics and Astronomy Quantum Field Theory Relativity Theory SKYRME POTENTIAL Solid State Physics SOLITONS Transition temperature Variation |
title | Role of critical fluctuations in the formation of a skyrmion lattice in MnSi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20critical%20fluctuations%20in%20the%20formation%20of%20a%20skyrmion%20lattice%20in%20MnSi&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Chubova,%20N.%20M.&rft.date=2017-11-01&rft.volume=125&rft.issue=5&rft.spage=789&rft.epage=797&rft.pages=789-797&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776117100119&rft_dat=%3Cproquest_osti_%3E1976030105%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976030105&rft_id=info:pmid/&rfr_iscdi=true |