Role of critical fluctuations in the formation of a skyrmion lattice in MnSi

The region in the H – T phase diagram near the critical temperature ( T c ) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field H is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental and theoretical physics 2017-11, Vol.125 (5), p.789-797
Hauptverfasser: Chubova, N. M., Moskvin, E. V., Dyad’kin, V. A., Dewhurst, Ch, Maleev, S. V., Grigor’ev, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 797
container_issue 5
container_start_page 789
container_title Journal of experimental and theoretical physics
container_volume 125
creator Chubova, N. M.
Moskvin, E. V.
Dyad’kin, V. A.
Dewhurst, Ch
Maleev, S. V.
Grigor’ev, S. V.
description The region in the H – T phase diagram near the critical temperature ( T c ) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field H is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector k f , (b) conical structure with k c ǁ H , and (c) hexagonal skyrmion lattice with k sk ⊥ H . Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature T c = 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral d s . The skyrmion lattice is localized near T c and is related to the fluctuations of a spiral with correlation length ξ ≈ 2 d s , and the propagation vector is normal to the field ( k sk ⊥ H ). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.
doi_str_mv 10.1134/S1063776117100119
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22756285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1976030105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-b2a368c265d802f33fab8c0d9da56ae8c8e88bfbe5b63912245a3cdaca4542433</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcF19WbpEnTpQy-YERwdB3SNHEydpoxSRfz722toCCu7us7h8tB6BzDJca0uFph4LQsOcYlBsC4OkAzDBXknEF1OPac5uP9GJ3EuAEAQaCaoeWzb03mbaaDS06rNrNtr1OvkvNdzFyXpbXJrA_br81Iqiy-78N2nFqVBpEZscdu5U7RkVVtNGffdY5eb29eFvf58unuYXG9zDUtipTXRFEuNOGsEUAspVbVQkNTNYpxZYQWRoja1obVnFaYkIIpqhulVcEKUlA6RxeTr4_JyahdMnqtfdcZnSQhJeNEsB9qF_xHb2KSG9-HbnhM4qrkQAHDSOGJ0sHHGIyVu-C2KuwlBjlGK_9EO2jIpIkD272Z8Mv5X9EnLoh5ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976030105</pqid></control><display><type>article</type><title>Role of critical fluctuations in the formation of a skyrmion lattice in MnSi</title><source>SpringerNature Journals</source><creator>Chubova, N. M. ; Moskvin, E. V. ; Dyad’kin, V. A. ; Dewhurst, Ch ; Maleev, S. V. ; Grigor’ev, S. V.</creator><creatorcontrib>Chubova, N. M. ; Moskvin, E. V. ; Dyad’kin, V. A. ; Dewhurst, Ch ; Maleev, S. V. ; Grigor’ev, S. V.</creatorcontrib><description>The region in the H – T phase diagram near the critical temperature ( T c ) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field H is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector k f , (b) conical structure with k c ǁ H , and (c) hexagonal skyrmion lattice with k sk ⊥ H . Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature T c = 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral d s . The skyrmion lattice is localized near T c and is related to the fluctuations of a spiral with correlation length ξ ≈ 2 d s , and the propagation vector is normal to the field ( k sk ⊥ H ). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776117100119</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CRITICAL TEMPERATURE ; Defects ; Disorder ; Elementary Particles ; FLUCTUATIONS ; MAGNETIC FIELDS ; MAGNETS ; MANGANESE SILICIDES ; NEUTRON DIFFRACTION ; Order ; Particle and Nuclear Physics ; PHASE DIAGRAMS ; Phase Transition in Condensed System ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; SKYRME POTENTIAL ; Solid State Physics ; SOLITONS ; Transition temperature ; Variation</subject><ispartof>Journal of experimental and theoretical physics, 2017-11, Vol.125 (5), p.789-797</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-b2a368c265d802f33fab8c0d9da56ae8c8e88bfbe5b63912245a3cdaca4542433</citedby><cites>FETCH-LOGICAL-c344t-b2a368c265d802f33fab8c0d9da56ae8c8e88bfbe5b63912245a3cdaca4542433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776117100119$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776117100119$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22756285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chubova, N. M.</creatorcontrib><creatorcontrib>Moskvin, E. V.</creatorcontrib><creatorcontrib>Dyad’kin, V. A.</creatorcontrib><creatorcontrib>Dewhurst, Ch</creatorcontrib><creatorcontrib>Maleev, S. V.</creatorcontrib><creatorcontrib>Grigor’ev, S. V.</creatorcontrib><title>Role of critical fluctuations in the formation of a skyrmion lattice in MnSi</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>The region in the H – T phase diagram near the critical temperature ( T c ) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field H is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector k f , (b) conical structure with k c ǁ H , and (c) hexagonal skyrmion lattice with k sk ⊥ H . Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature T c = 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral d s . The skyrmion lattice is localized near T c and is related to the fluctuations of a spiral with correlation length ξ ≈ 2 d s , and the propagation vector is normal to the field ( k sk ⊥ H ). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.</description><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CRITICAL TEMPERATURE</subject><subject>Defects</subject><subject>Disorder</subject><subject>Elementary Particles</subject><subject>FLUCTUATIONS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETS</subject><subject>MANGANESE SILICIDES</subject><subject>NEUTRON DIFFRACTION</subject><subject>Order</subject><subject>Particle and Nuclear Physics</subject><subject>PHASE DIAGRAMS</subject><subject>Phase Transition in Condensed System</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>SKYRME POTENTIAL</subject><subject>Solid State Physics</subject><subject>SOLITONS</subject><subject>Transition temperature</subject><subject>Variation</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcF19WbpEnTpQy-YERwdB3SNHEydpoxSRfz722toCCu7us7h8tB6BzDJca0uFph4LQsOcYlBsC4OkAzDBXknEF1OPac5uP9GJ3EuAEAQaCaoeWzb03mbaaDS06rNrNtr1OvkvNdzFyXpbXJrA_br81Iqiy-78N2nFqVBpEZscdu5U7RkVVtNGffdY5eb29eFvf58unuYXG9zDUtipTXRFEuNOGsEUAspVbVQkNTNYpxZYQWRoja1obVnFaYkIIpqhulVcEKUlA6RxeTr4_JyahdMnqtfdcZnSQhJeNEsB9qF_xHb2KSG9-HbnhM4qrkQAHDSOGJ0sHHGIyVu-C2KuwlBjlGK_9EO2jIpIkD272Z8Mv5X9EnLoh5ew</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Chubova, N. M.</creator><creator>Moskvin, E. V.</creator><creator>Dyad’kin, V. A.</creator><creator>Dewhurst, Ch</creator><creator>Maleev, S. V.</creator><creator>Grigor’ev, S. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20171101</creationdate><title>Role of critical fluctuations in the formation of a skyrmion lattice in MnSi</title><author>Chubova, N. M. ; Moskvin, E. V. ; Dyad’kin, V. A. ; Dewhurst, Ch ; Maleev, S. V. ; Grigor’ev, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-b2a368c265d802f33fab8c0d9da56ae8c8e88bfbe5b63912245a3cdaca4542433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CRITICAL TEMPERATURE</topic><topic>Defects</topic><topic>Disorder</topic><topic>Elementary Particles</topic><topic>FLUCTUATIONS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETS</topic><topic>MANGANESE SILICIDES</topic><topic>NEUTRON DIFFRACTION</topic><topic>Order</topic><topic>Particle and Nuclear Physics</topic><topic>PHASE DIAGRAMS</topic><topic>Phase Transition in Condensed System</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>SKYRME POTENTIAL</topic><topic>Solid State Physics</topic><topic>SOLITONS</topic><topic>Transition temperature</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chubova, N. M.</creatorcontrib><creatorcontrib>Moskvin, E. V.</creatorcontrib><creatorcontrib>Dyad’kin, V. A.</creatorcontrib><creatorcontrib>Dewhurst, Ch</creatorcontrib><creatorcontrib>Maleev, S. V.</creatorcontrib><creatorcontrib>Grigor’ev, S. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chubova, N. M.</au><au>Moskvin, E. V.</au><au>Dyad’kin, V. A.</au><au>Dewhurst, Ch</au><au>Maleev, S. V.</au><au>Grigor’ev, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of critical fluctuations in the formation of a skyrmion lattice in MnSi</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>125</volume><issue>5</issue><spage>789</spage><epage>797</epage><pages>789-797</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>The region in the H – T phase diagram near the critical temperature ( T c ) of the cubic helicoidal MnSi magnet is comprehensively studied by small-angle neutron diffraction. Magnetic field H is applied along the [111] axis. The experimental geometry is chosen to simultaneously observe the following three different magnetic states of the system: (a) critical fluctuations of a spin spiral with randomly orientated wavevector k f , (b) conical structure with k c ǁ H , and (c) hexagonal skyrmion lattice with k sk ⊥ H . Both states (conical structure, and skyrmion lattice) are shown to exist above critical temperature T c = 29 K against the background of the critical fluctuations of a spin spiral. The conical lattice is present up to the temperatures where fluctuation correlation length ξ becomes comparable with pitch of spiral d s . The skyrmion lattice is localized near T c and is related to the fluctuations of a spiral with correlation length ξ ≈ 2 d s , and the propagation vector is normal to the field ( k sk ⊥ H ). These spiral fluctuations are assumed to be the defects that stabilize the skyrmion lattice and promote its formation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776117100119</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2017-11, Vol.125 (5), p.789-797
issn 1063-7761
1090-6509
language eng
recordid cdi_osti_scitechconnect_22756285
source SpringerNature Journals
subjects Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CRITICAL TEMPERATURE
Defects
Disorder
Elementary Particles
FLUCTUATIONS
MAGNETIC FIELDS
MAGNETS
MANGANESE SILICIDES
NEUTRON DIFFRACTION
Order
Particle and Nuclear Physics
PHASE DIAGRAMS
Phase Transition in Condensed System
Physics
Physics and Astronomy
Quantum Field Theory
Relativity Theory
SKYRME POTENTIAL
Solid State Physics
SOLITONS
Transition temperature
Variation
title Role of critical fluctuations in the formation of a skyrmion lattice in MnSi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20critical%20fluctuations%20in%20the%20formation%20of%20a%20skyrmion%20lattice%20in%20MnSi&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Chubova,%20N.%20M.&rft.date=2017-11-01&rft.volume=125&rft.issue=5&rft.spage=789&rft.epage=797&rft.pages=789-797&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776117100119&rft_dat=%3Cproquest_osti_%3E1976030105%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976030105&rft_id=info:pmid/&rfr_iscdi=true