Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games

We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2018-02, Vol.77 (1), p.47-71
Hauptverfasser: Graber, P. Jameson, Bensoussan, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 1
container_start_page 47
container_title Applied mathematics & optimization
container_volume 77
creator Graber, P. Jameson
Bensoussan, Alain
description We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an additional hypothesis we prove uniqueness.
doi_str_mv 10.1007/s00245-016-9366-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22756223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993515689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-2657a4b0fb5725e57e852712a19cb7958422f1020e2f0233a28b0df089b5675a3</originalsourceid><addsrcrecordid>eNp1kMFOAyEQhonRxFp9AG8kntGBXWA5atNWk5oetGfCbkG3aaECTfTtZVNjvHiYzOX7Jv_8CF1TuKUA8i4BsJoToIKoSggCJ2hE64oRECBO0QhAcVILKs7RRUobKHglqhFaTj_7lK3vLDZ-jVe-_zhYb1PCweGXsD3kPviEXYj4wcYcB2iYSThEHzJ-tsbjWW-3azw3O5su0Zkz22SvfvYYrWbT18kjWSznT5P7Bemqus6ECS5N3YJruWTccmkbziRlhqqulYo3NWOOAgPLXElaGda0sHbQqJYLyU01RjfHuyHlXqeuz7Z774L3tsuaMckFK9ovtY-h_JWy3gy5SzBNlao45aJRhaJHqoshpWid3sd-Z-KXpqCHdvWxXV3a1UO7GorDjk4qrH-z8c_lf6VvYLt5-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993515689</pqid></control><display><type>article</type><title>Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Graber, P. Jameson ; Bensoussan, Alain</creator><creatorcontrib>Graber, P. Jameson ; Bensoussan, Alain</creatorcontrib><description>We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an additional hypothesis we prove uniqueness.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-016-9366-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Control ; Economic analysis ; Economic models ; FOKKER-PLANCK EQUATION ; Game theory ; HAMILTON-JACOBI EQUATIONS ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; MATHEMATICAL SOLUTIONS ; Mathematics ; Mathematics and Statistics ; MEAN-FIELD THEORY ; Numerical and Computational Physics ; OPTIMAL CONTROL ; Partial differential equations ; Simulation ; Systems Theory ; Theoretical ; Uniqueness</subject><ispartof>Applied mathematics &amp; optimization, 2018-02, Vol.77 (1), p.47-71</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Applied Mathematics &amp; Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-2657a4b0fb5725e57e852712a19cb7958422f1020e2f0233a28b0df089b5675a3</citedby><cites>FETCH-LOGICAL-c344t-2657a4b0fb5725e57e852712a19cb7958422f1020e2f0233a28b0df089b5675a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-016-9366-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-016-9366-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22756223$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Graber, P. Jameson</creatorcontrib><creatorcontrib>Bensoussan, Alain</creatorcontrib><title>Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games</title><title>Applied mathematics &amp; optimization</title><addtitle>Appl Math Optim</addtitle><description>We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an additional hypothesis we prove uniqueness.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Control</subject><subject>Economic analysis</subject><subject>Economic models</subject><subject>FOKKER-PLANCK EQUATION</subject><subject>Game theory</subject><subject>HAMILTON-JACOBI EQUATIONS</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>MEAN-FIELD THEORY</subject><subject>Numerical and Computational Physics</subject><subject>OPTIMAL CONTROL</subject><subject>Partial differential equations</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Uniqueness</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFOAyEQhonRxFp9AG8kntGBXWA5atNWk5oetGfCbkG3aaECTfTtZVNjvHiYzOX7Jv_8CF1TuKUA8i4BsJoToIKoSggCJ2hE64oRECBO0QhAcVILKs7RRUobKHglqhFaTj_7lK3vLDZ-jVe-_zhYb1PCweGXsD3kPviEXYj4wcYcB2iYSThEHzJ-tsbjWW-3azw3O5su0Zkz22SvfvYYrWbT18kjWSznT5P7Bemqus6ECS5N3YJruWTccmkbziRlhqqulYo3NWOOAgPLXElaGda0sHbQqJYLyU01RjfHuyHlXqeuz7Z774L3tsuaMckFK9ovtY-h_JWy3gy5SzBNlao45aJRhaJHqoshpWid3sd-Z-KXpqCHdvWxXV3a1UO7GorDjk4qrH-z8c_lf6VvYLt5-w</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Graber, P. Jameson</creator><creator>Bensoussan, Alain</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20180201</creationdate><title>Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games</title><author>Graber, P. Jameson ; Bensoussan, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-2657a4b0fb5725e57e852712a19cb7958422f1020e2f0233a28b0df089b5675a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Control</topic><topic>Economic analysis</topic><topic>Economic models</topic><topic>FOKKER-PLANCK EQUATION</topic><topic>Game theory</topic><topic>HAMILTON-JACOBI EQUATIONS</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>MEAN-FIELD THEORY</topic><topic>Numerical and Computational Physics</topic><topic>OPTIMAL CONTROL</topic><topic>Partial differential equations</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graber, P. Jameson</creatorcontrib><creatorcontrib>Bensoussan, Alain</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Applied mathematics &amp; optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graber, P. Jameson</au><au>Bensoussan, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games</atitle><jtitle>Applied mathematics &amp; optimization</jtitle><stitle>Appl Math Optim</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>77</volume><issue>1</issue><spage>47</spage><epage>71</epage><pages>47-71</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an additional hypothesis we prove uniqueness.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-016-9366-0</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-4616
ispartof Applied mathematics & optimization, 2018-02, Vol.77 (1), p.47-71
issn 0095-4616
1432-0606
language eng
recordid cdi_osti_scitechconnect_22756223
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Calculus of Variations and Optimal Control
Optimization
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Control
Economic analysis
Economic models
FOKKER-PLANCK EQUATION
Game theory
HAMILTON-JACOBI EQUATIONS
Mathematical and Computational Physics
Mathematical Methods in Physics
MATHEMATICAL SOLUTIONS
Mathematics
Mathematics and Statistics
MEAN-FIELD THEORY
Numerical and Computational Physics
OPTIMAL CONTROL
Partial differential equations
Simulation
Systems Theory
Theoretical
Uniqueness
title Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Uniqueness%20of%20Solutions%20for%20Bertrand%20and%20Cournot%20Mean%20Field%20Games&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Graber,%20P.%20Jameson&rft.date=2018-02-01&rft.volume=77&rft.issue=1&rft.spage=47&rft.epage=71&rft.pages=47-71&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-016-9366-0&rft_dat=%3Cproquest_osti_%3E1993515689%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993515689&rft_id=info:pmid/&rfr_iscdi=true