Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games
We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2018-02, Vol.77 (1), p.47-71 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Applied mathematics & optimization |
container_volume | 77 |
creator | Graber, P. Jameson Bensoussan, Alain |
description | We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an additional hypothesis we prove uniqueness. |
doi_str_mv | 10.1007/s00245-016-9366-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22756223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993515689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-2657a4b0fb5725e57e852712a19cb7958422f1020e2f0233a28b0df089b5675a3</originalsourceid><addsrcrecordid>eNp1kMFOAyEQhonRxFp9AG8kntGBXWA5atNWk5oetGfCbkG3aaECTfTtZVNjvHiYzOX7Jv_8CF1TuKUA8i4BsJoToIKoSggCJ2hE64oRECBO0QhAcVILKs7RRUobKHglqhFaTj_7lK3vLDZ-jVe-_zhYb1PCweGXsD3kPviEXYj4wcYcB2iYSThEHzJ-tsbjWW-3azw3O5su0Zkz22SvfvYYrWbT18kjWSznT5P7Bemqus6ECS5N3YJruWTccmkbziRlhqqulYo3NWOOAgPLXElaGda0sHbQqJYLyU01RjfHuyHlXqeuz7Z774L3tsuaMckFK9ovtY-h_JWy3gy5SzBNlao45aJRhaJHqoshpWid3sd-Z-KXpqCHdvWxXV3a1UO7GorDjk4qrH-z8c_lf6VvYLt5-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993515689</pqid></control><display><type>article</type><title>Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Graber, P. Jameson ; Bensoussan, Alain</creator><creatorcontrib>Graber, P. Jameson ; Bensoussan, Alain</creatorcontrib><description>We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an additional hypothesis we prove uniqueness.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-016-9366-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Control ; Economic analysis ; Economic models ; FOKKER-PLANCK EQUATION ; Game theory ; HAMILTON-JACOBI EQUATIONS ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; MATHEMATICAL SOLUTIONS ; Mathematics ; Mathematics and Statistics ; MEAN-FIELD THEORY ; Numerical and Computational Physics ; OPTIMAL CONTROL ; Partial differential equations ; Simulation ; Systems Theory ; Theoretical ; Uniqueness</subject><ispartof>Applied mathematics & optimization, 2018-02, Vol.77 (1), p.47-71</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Applied Mathematics & Optimization is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-2657a4b0fb5725e57e852712a19cb7958422f1020e2f0233a28b0df089b5675a3</citedby><cites>FETCH-LOGICAL-c344t-2657a4b0fb5725e57e852712a19cb7958422f1020e2f0233a28b0df089b5675a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-016-9366-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-016-9366-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22756223$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Graber, P. Jameson</creatorcontrib><creatorcontrib>Bensoussan, Alain</creatorcontrib><title>Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games</title><title>Applied mathematics & optimization</title><addtitle>Appl Math Optim</addtitle><description>We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an additional hypothesis we prove uniqueness.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Control</subject><subject>Economic analysis</subject><subject>Economic models</subject><subject>FOKKER-PLANCK EQUATION</subject><subject>Game theory</subject><subject>HAMILTON-JACOBI EQUATIONS</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>MEAN-FIELD THEORY</subject><subject>Numerical and Computational Physics</subject><subject>OPTIMAL CONTROL</subject><subject>Partial differential equations</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Uniqueness</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFOAyEQhonRxFp9AG8kntGBXWA5atNWk5oetGfCbkG3aaECTfTtZVNjvHiYzOX7Jv_8CF1TuKUA8i4BsJoToIKoSggCJ2hE64oRECBO0QhAcVILKs7RRUobKHglqhFaTj_7lK3vLDZ-jVe-_zhYb1PCweGXsD3kPviEXYj4wcYcB2iYSThEHzJ-tsbjWW-3azw3O5su0Zkz22SvfvYYrWbT18kjWSznT5P7Bemqus6ECS5N3YJruWTccmkbziRlhqqulYo3NWOOAgPLXElaGda0sHbQqJYLyU01RjfHuyHlXqeuz7Z774L3tsuaMckFK9ovtY-h_JWy3gy5SzBNlao45aJRhaJHqoshpWid3sd-Z-KXpqCHdvWxXV3a1UO7GorDjk4qrH-z8c_lf6VvYLt5-w</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Graber, P. Jameson</creator><creator>Bensoussan, Alain</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20180201</creationdate><title>Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games</title><author>Graber, P. Jameson ; Bensoussan, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-2657a4b0fb5725e57e852712a19cb7958422f1020e2f0233a28b0df089b5675a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Control</topic><topic>Economic analysis</topic><topic>Economic models</topic><topic>FOKKER-PLANCK EQUATION</topic><topic>Game theory</topic><topic>HAMILTON-JACOBI EQUATIONS</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>MEAN-FIELD THEORY</topic><topic>Numerical and Computational Physics</topic><topic>OPTIMAL CONTROL</topic><topic>Partial differential equations</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graber, P. Jameson</creatorcontrib><creatorcontrib>Bensoussan, Alain</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graber, P. Jameson</au><au>Bensoussan, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games</atitle><jtitle>Applied mathematics & optimization</jtitle><stitle>Appl Math Optim</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>77</volume><issue>1</issue><spage>47</spage><epage>71</epage><pages>47-71</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>We study a system of partial differential equations used to describe Bertrand and Cournot competition among a continuum of producers of an exhaustible resource. By deriving new a priori estimates, we prove the existence of classical solutions under general assumptions on the data. Moreover, under an additional hypothesis we prove uniqueness.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-016-9366-0</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2018-02, Vol.77 (1), p.47-71 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_osti_scitechconnect_22756223 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Calculus of Variations and Optimal Control Optimization CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Control Economic analysis Economic models FOKKER-PLANCK EQUATION Game theory HAMILTON-JACOBI EQUATIONS Mathematical and Computational Physics Mathematical Methods in Physics MATHEMATICAL SOLUTIONS Mathematics Mathematics and Statistics MEAN-FIELD THEORY Numerical and Computational Physics OPTIMAL CONTROL Partial differential equations Simulation Systems Theory Theoretical Uniqueness |
title | Existence and Uniqueness of Solutions for Bertrand and Cournot Mean Field Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Uniqueness%20of%20Solutions%20for%20Bertrand%20and%20Cournot%20Mean%20Field%20Games&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Graber,%20P.%20Jameson&rft.date=2018-02-01&rft.volume=77&rft.issue=1&rft.spage=47&rft.epage=71&rft.pages=47-71&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-016-9366-0&rft_dat=%3Cproquest_osti_%3E1993515689%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993515689&rft_id=info:pmid/&rfr_iscdi=true |