Absorption of Far-Infrared Radiation in Ge/Si Quantum Dots

The experimental and theoretical results of studies of optical absorption in doped Ge/Si quantumdot structures in the far-infrared region, corresponding to the energies of transitions of holes from the ground state to the lowest excited size-quantization state, are reported. An analytical theory of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2018-01, Vol.52 (1), p.59-63
Hauptverfasser: Sofronov, A. N., Balagula, R. M., Firsov, D. A., Vorobjev, L. E., Tonkikh, A. A., Sarkisyan, H. A., Hayrapetyan, D. B., Petrosyan, L. S., Kazaryan, E. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 59
container_title Semiconductors (Woodbury, N.Y.)
container_volume 52
creator Sofronov, A. N.
Balagula, R. M.
Firsov, D. A.
Vorobjev, L. E.
Tonkikh, A. A.
Sarkisyan, H. A.
Hayrapetyan, D. B.
Petrosyan, L. S.
Kazaryan, E. M.
description The experimental and theoretical results of studies of optical absorption in doped Ge/Si quantumdot structures in the far-infrared region, corresponding to the energies of transitions of holes from the ground state to the lowest excited size-quantization state, are reported. An analytical theory of the size quantization of holes in a lens-shaped quantum dot is developed in the context of the adiabatic approximation with consideration for pair Coulomb interaction. It is shown that the interaction has no effect on the frequencies of lower interlevel resonances. This fact is representative of generalized Kohn’s theorem satisfied due to the specific geometric shape of the quantum dot. The experimental and theoretical values of the transition energies are in good agreement.
doi_str_mv 10.1134/S1063782618010220
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22756185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A529490816</galeid><sourcerecordid>A529490816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-b4035abc3516c17eb3e9c02990706e3c2d2b4b2ea11ab5c26ca9ffd01e8fde143</originalsourceid><addsrcrecordid>eNp1kEtLBDEMxwdRcH18AG8DnkeTdl71tqyvBUF8nUunk2plt13b7sFvb9cVPIjkkJD8fyH5F8UJwhkir8-fEFre9azFHhAYg51igiCgautO7G7qlleb-X5xEOM7AGLf1JPiYjpEH1bJeld6U16rUM2dCSrQWD6q0arviXXlDZ0_2fJhrVxaL8tLn-JRsWfUItLxTz4sXq6vnme31d39zXw2vat0zTFVQw28UYPmDbYaOxo4CQ1MCOigJa7ZyIZ6YKQQ1dBo1moljBkBqTcjYc0Pi9PtXh-TlVHbRPpNe-dIJ8lY1-Sfm1_VKviPNcUk3_06uHyYZJAN4Z3oWFadbVWvakHSOuNTUDrHSEubd5KxuT9tmKgF9NhmALeADj7GQEaugl2q8CkR5MZ5-cf5zLAtE7PWvVL4PeV_6AuFdYIE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002237972</pqid></control><display><type>article</type><title>Absorption of Far-Infrared Radiation in Ge/Si Quantum Dots</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sofronov, A. N. ; Balagula, R. M. ; Firsov, D. A. ; Vorobjev, L. E. ; Tonkikh, A. A. ; Sarkisyan, H. A. ; Hayrapetyan, D. B. ; Petrosyan, L. S. ; Kazaryan, E. M.</creator><creatorcontrib>Sofronov, A. N. ; Balagula, R. M. ; Firsov, D. A. ; Vorobjev, L. E. ; Tonkikh, A. A. ; Sarkisyan, H. A. ; Hayrapetyan, D. B. ; Petrosyan, L. S. ; Kazaryan, E. M.</creatorcontrib><description>The experimental and theoretical results of studies of optical absorption in doped Ge/Si quantumdot structures in the far-infrared region, corresponding to the energies of transitions of holes from the ground state to the lowest excited size-quantization state, are reported. An analytical theory of the size quantization of holes in a lens-shaped quantum dot is developed in the context of the adiabatic approximation with consideration for pair Coulomb interaction. It is shown that the interaction has no effect on the frequencies of lower interlevel resonances. This fact is representative of generalized Kohn’s theorem satisfied due to the specific geometric shape of the quantum dot. The experimental and theoretical values of the transition energies are in good agreement.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782618010220</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>ABSORPTION ; ADIABATIC APPROXIMATION ; Adiabatic flow ; DOPED MATERIALS ; FAR INFRARED RADIATION ; GERMANIUM ; GROUND STATES ; Low-Dimensional Systems ; Magnetic Materials ; Magnetism ; MATERIALS SCIENCE ; Measurement ; NUCLEAR MAGNETIC RESONANCE ; PAIRING INTERACTIONS ; Physics ; Physics and Astronomy ; QUANTUM DOTS ; Quantum Phenomena ; Radiation (Physics) ; Semiconductor Structures ; Silicon</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2018-01, Vol.52 (1), p.59-63</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-b4035abc3516c17eb3e9c02990706e3c2d2b4b2ea11ab5c26ca9ffd01e8fde143</citedby><cites>FETCH-LOGICAL-c431t-b4035abc3516c17eb3e9c02990706e3c2d2b4b2ea11ab5c26ca9ffd01e8fde143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782618010220$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782618010220$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22756185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sofronov, A. N.</creatorcontrib><creatorcontrib>Balagula, R. M.</creatorcontrib><creatorcontrib>Firsov, D. A.</creatorcontrib><creatorcontrib>Vorobjev, L. E.</creatorcontrib><creatorcontrib>Tonkikh, A. A.</creatorcontrib><creatorcontrib>Sarkisyan, H. A.</creatorcontrib><creatorcontrib>Hayrapetyan, D. B.</creatorcontrib><creatorcontrib>Petrosyan, L. S.</creatorcontrib><creatorcontrib>Kazaryan, E. M.</creatorcontrib><title>Absorption of Far-Infrared Radiation in Ge/Si Quantum Dots</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The experimental and theoretical results of studies of optical absorption in doped Ge/Si quantumdot structures in the far-infrared region, corresponding to the energies of transitions of holes from the ground state to the lowest excited size-quantization state, are reported. An analytical theory of the size quantization of holes in a lens-shaped quantum dot is developed in the context of the adiabatic approximation with consideration for pair Coulomb interaction. It is shown that the interaction has no effect on the frequencies of lower interlevel resonances. This fact is representative of generalized Kohn’s theorem satisfied due to the specific geometric shape of the quantum dot. The experimental and theoretical values of the transition energies are in good agreement.</description><subject>ABSORPTION</subject><subject>ADIABATIC APPROXIMATION</subject><subject>Adiabatic flow</subject><subject>DOPED MATERIALS</subject><subject>FAR INFRARED RADIATION</subject><subject>GERMANIUM</subject><subject>GROUND STATES</subject><subject>Low-Dimensional Systems</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>Measurement</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>PAIRING INTERACTIONS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>QUANTUM DOTS</subject><subject>Quantum Phenomena</subject><subject>Radiation (Physics)</subject><subject>Semiconductor Structures</subject><subject>Silicon</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLBDEMxwdRcH18AG8DnkeTdl71tqyvBUF8nUunk2plt13b7sFvb9cVPIjkkJD8fyH5F8UJwhkir8-fEFre9azFHhAYg51igiCgautO7G7qlleb-X5xEOM7AGLf1JPiYjpEH1bJeld6U16rUM2dCSrQWD6q0arviXXlDZ0_2fJhrVxaL8tLn-JRsWfUItLxTz4sXq6vnme31d39zXw2vat0zTFVQw28UYPmDbYaOxo4CQ1MCOigJa7ZyIZ6YKQQ1dBo1moljBkBqTcjYc0Pi9PtXh-TlVHbRPpNe-dIJ8lY1-Sfm1_VKviPNcUk3_06uHyYZJAN4Z3oWFadbVWvakHSOuNTUDrHSEubd5KxuT9tmKgF9NhmALeADj7GQEaugl2q8CkR5MZ5-cf5zLAtE7PWvVL4PeV_6AuFdYIE</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Sofronov, A. N.</creator><creator>Balagula, R. M.</creator><creator>Firsov, D. A.</creator><creator>Vorobjev, L. E.</creator><creator>Tonkikh, A. A.</creator><creator>Sarkisyan, H. A.</creator><creator>Hayrapetyan, D. B.</creator><creator>Petrosyan, L. S.</creator><creator>Kazaryan, E. M.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180101</creationdate><title>Absorption of Far-Infrared Radiation in Ge/Si Quantum Dots</title><author>Sofronov, A. N. ; Balagula, R. M. ; Firsov, D. A. ; Vorobjev, L. E. ; Tonkikh, A. A. ; Sarkisyan, H. A. ; Hayrapetyan, D. B. ; Petrosyan, L. S. ; Kazaryan, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-b4035abc3516c17eb3e9c02990706e3c2d2b4b2ea11ab5c26ca9ffd01e8fde143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ABSORPTION</topic><topic>ADIABATIC APPROXIMATION</topic><topic>Adiabatic flow</topic><topic>DOPED MATERIALS</topic><topic>FAR INFRARED RADIATION</topic><topic>GERMANIUM</topic><topic>GROUND STATES</topic><topic>Low-Dimensional Systems</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>Measurement</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>PAIRING INTERACTIONS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>QUANTUM DOTS</topic><topic>Quantum Phenomena</topic><topic>Radiation (Physics)</topic><topic>Semiconductor Structures</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sofronov, A. N.</creatorcontrib><creatorcontrib>Balagula, R. M.</creatorcontrib><creatorcontrib>Firsov, D. A.</creatorcontrib><creatorcontrib>Vorobjev, L. E.</creatorcontrib><creatorcontrib>Tonkikh, A. A.</creatorcontrib><creatorcontrib>Sarkisyan, H. A.</creatorcontrib><creatorcontrib>Hayrapetyan, D. B.</creatorcontrib><creatorcontrib>Petrosyan, L. S.</creatorcontrib><creatorcontrib>Kazaryan, E. M.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sofronov, A. N.</au><au>Balagula, R. M.</au><au>Firsov, D. A.</au><au>Vorobjev, L. E.</au><au>Tonkikh, A. A.</au><au>Sarkisyan, H. A.</au><au>Hayrapetyan, D. B.</au><au>Petrosyan, L. S.</au><au>Kazaryan, E. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absorption of Far-Infrared Radiation in Ge/Si Quantum Dots</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>52</volume><issue>1</issue><spage>59</spage><epage>63</epage><pages>59-63</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The experimental and theoretical results of studies of optical absorption in doped Ge/Si quantumdot structures in the far-infrared region, corresponding to the energies of transitions of holes from the ground state to the lowest excited size-quantization state, are reported. An analytical theory of the size quantization of holes in a lens-shaped quantum dot is developed in the context of the adiabatic approximation with consideration for pair Coulomb interaction. It is shown that the interaction has no effect on the frequencies of lower interlevel resonances. This fact is representative of generalized Kohn’s theorem satisfied due to the specific geometric shape of the quantum dot. The experimental and theoretical values of the transition energies are in good agreement.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782618010220</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2018-01, Vol.52 (1), p.59-63
issn 1063-7826
1090-6479
language eng
recordid cdi_osti_scitechconnect_22756185
source SpringerLink Journals - AutoHoldings
subjects ABSORPTION
ADIABATIC APPROXIMATION
Adiabatic flow
DOPED MATERIALS
FAR INFRARED RADIATION
GERMANIUM
GROUND STATES
Low-Dimensional Systems
Magnetic Materials
Magnetism
MATERIALS SCIENCE
Measurement
NUCLEAR MAGNETIC RESONANCE
PAIRING INTERACTIONS
Physics
Physics and Astronomy
QUANTUM DOTS
Quantum Phenomena
Radiation (Physics)
Semiconductor Structures
Silicon
title Absorption of Far-Infrared Radiation in Ge/Si Quantum Dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absorption%20of%20Far-Infrared%20Radiation%20in%20Ge/Si%20Quantum%20Dots&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Sofronov,%20A.%20N.&rft.date=2018-01-01&rft.volume=52&rft.issue=1&rft.spage=59&rft.epage=63&rft.pages=59-63&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782618010220&rft_dat=%3Cgale_osti_%3EA529490816%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002237972&rft_id=info:pmid/&rft_galeid=A529490816&rfr_iscdi=true