Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental and theoretical physics 2018-01, Vol.126 (1), p.115-125
Hauptverfasser: Esmaeili, A. M., Useinov, A. N., Useinov, N. Kh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 1
container_start_page 115
container_title Journal of experimental and theoretical physics
container_volume 126
creator Esmaeili, A. M.
Useinov, A. N.
Useinov, N. Kh
description Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.
doi_str_mv 10.1134/S1063776118010168
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22750056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539035521</galeid><sourcerecordid>A539035521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-9b091776fd743b230db0647f5370f4e07fcef60e8464369bb53df01de1d75a763</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEEqXwANwiceKQMo5je3OsFgpFBSR2OVuOM9662trBdiTgLXhjJgQEFUI-2PJ8_z_za6rqKYMzxnj3YsdAcqUkYxtgwOTmXnXCoIdGCujvL2_Jm6X-sHqU8w0AbFroT6rvL3HCMGKwmOvo6nKN9X4OAY_1O3MIWGLC7HMxBNQmjPVu8qHeJxOyw1TvY_o8Yx3DT-HOfyOXhdpG4kNJpniqke97E-JkUvH2SAhZrO7e_u72dg52gfPj6oEzx4xPft2n1aeLV_vtm-bqw-vL7flVYzumStMP0DMK5EbV8aHlMA4gO-UEV-A6BOUsOgm46WTHZT8Mgo8O2IhsVMIoyU-rZ6tvzMXrbH1Be20jDWOLblslAMRf1JQiJc1F38Q5BRpMt8CYJEwpos5W6mCOqH1wkaJbOiPeevJE5-n_XPAeuBAtI8HzOwJiCn4pBzPnrC93H--ybGVtijkndHpK_takr5qBXpav_1k-adpVk4kNB0x_xv6_6Af5E7A1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011675077</pqid></control><display><type>article</type><title>Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions</title><source>Springer Nature - Complete Springer Journals</source><creator>Esmaeili, A. M. ; Useinov, A. N. ; Useinov, N. Kh</creator><creatorcontrib>Esmaeili, A. M. ; Useinov, A. N. ; Useinov, N. Kh</creatorcontrib><description>Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776118010168</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Barriers ; Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Conduction electrons ; ELECTRIC POTENTIAL ; Electronic Properties of Solid ; Electrons ; Elementary Particles ; Ferromagnetism ; LAYERS ; Magnetic resonance ; MAGNETIC TUNNEL JUNCTIONS ; MAGNETORESISTANCE ; Magnetoresistivity ; MATERIALS SCIENCE ; Mathematical analysis ; NANOPARTICLES ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Resistance ; Solid State Physics ; SPIN ; Thickness ; TORQUE ; TUNNEL EFFECT ; Tunnel junctions ; Tunnel magnetoresistance</subject><ispartof>Journal of experimental and theoretical physics, 2018-01, Vol.126 (1), p.115-125</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-9b091776fd743b230db0647f5370f4e07fcef60e8464369bb53df01de1d75a763</citedby><cites>FETCH-LOGICAL-c417t-9b091776fd743b230db0647f5370f4e07fcef60e8464369bb53df01de1d75a763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776118010168$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776118010168$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22750056$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Esmaeili, A. M.</creatorcontrib><creatorcontrib>Useinov, A. N.</creatorcontrib><creatorcontrib>Useinov, N. Kh</creatorcontrib><title>Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.</description><subject>Barriers</subject><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Conduction electrons</subject><subject>ELECTRIC POTENTIAL</subject><subject>Electronic Properties of Solid</subject><subject>Electrons</subject><subject>Elementary Particles</subject><subject>Ferromagnetism</subject><subject>LAYERS</subject><subject>Magnetic resonance</subject><subject>MAGNETIC TUNNEL JUNCTIONS</subject><subject>MAGNETORESISTANCE</subject><subject>Magnetoresistivity</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>NANOPARTICLES</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Resistance</subject><subject>Solid State Physics</subject><subject>SPIN</subject><subject>Thickness</subject><subject>TORQUE</subject><subject>TUNNEL EFFECT</subject><subject>Tunnel junctions</subject><subject>Tunnel magnetoresistance</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhiMEEqXwANwiceKQMo5je3OsFgpFBSR2OVuOM9662trBdiTgLXhjJgQEFUI-2PJ8_z_za6rqKYMzxnj3YsdAcqUkYxtgwOTmXnXCoIdGCujvL2_Jm6X-sHqU8w0AbFroT6rvL3HCMGKwmOvo6nKN9X4OAY_1O3MIWGLC7HMxBNQmjPVu8qHeJxOyw1TvY_o8Yx3DT-HOfyOXhdpG4kNJpniqke97E-JkUvH2SAhZrO7e_u72dg52gfPj6oEzx4xPft2n1aeLV_vtm-bqw-vL7flVYzumStMP0DMK5EbV8aHlMA4gO-UEV-A6BOUsOgm46WTHZT8Mgo8O2IhsVMIoyU-rZ6tvzMXrbH1Be20jDWOLblslAMRf1JQiJc1F38Q5BRpMt8CYJEwpos5W6mCOqH1wkaJbOiPeevJE5-n_XPAeuBAtI8HzOwJiCn4pBzPnrC93H--ybGVtijkndHpK_takr5qBXpav_1k-adpVk4kNB0x_xv6_6Af5E7A1</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Esmaeili, A. M.</creator><creator>Useinov, A. N.</creator><creator>Useinov, N. Kh</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180101</creationdate><title>Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions</title><author>Esmaeili, A. M. ; Useinov, A. N. ; Useinov, N. Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-9b091776fd743b230db0647f5370f4e07fcef60e8464369bb53df01de1d75a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Barriers</topic><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Conduction electrons</topic><topic>ELECTRIC POTENTIAL</topic><topic>Electronic Properties of Solid</topic><topic>Electrons</topic><topic>Elementary Particles</topic><topic>Ferromagnetism</topic><topic>LAYERS</topic><topic>Magnetic resonance</topic><topic>MAGNETIC TUNNEL JUNCTIONS</topic><topic>MAGNETORESISTANCE</topic><topic>Magnetoresistivity</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>NANOPARTICLES</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Resistance</topic><topic>Solid State Physics</topic><topic>SPIN</topic><topic>Thickness</topic><topic>TORQUE</topic><topic>TUNNEL EFFECT</topic><topic>Tunnel junctions</topic><topic>Tunnel magnetoresistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esmaeili, A. M.</creatorcontrib><creatorcontrib>Useinov, A. N.</creatorcontrib><creatorcontrib>Useinov, N. Kh</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esmaeili, A. M.</au><au>Useinov, A. N.</au><au>Useinov, N. Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>126</volume><issue>1</issue><spage>115</spage><epage>125</epage><pages>115-125</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776118010168</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2018-01, Vol.126 (1), p.115-125
issn 1063-7761
1090-6509
language eng
recordid cdi_osti_scitechconnect_22750056
source Springer Nature - Complete Springer Journals
subjects Barriers
Classical and Quantum Gravitation
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Conduction electrons
ELECTRIC POTENTIAL
Electronic Properties of Solid
Electrons
Elementary Particles
Ferromagnetism
LAYERS
Magnetic resonance
MAGNETIC TUNNEL JUNCTIONS
MAGNETORESISTANCE
Magnetoresistivity
MATERIALS SCIENCE
Mathematical analysis
NANOPARTICLES
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quantum Field Theory
Relativity Theory
Resistance
Solid State Physics
SPIN
Thickness
TORQUE
TUNNEL EFFECT
Tunnel junctions
Tunnel magnetoresistance
title Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependences%20of%20the%20Tunnel%20Magnetoresistance%20and%20Spin%20Transfer%20Torque%20on%20the%20Sizes%20and%20Concentration%20of%20Nanoparticles%20in%20Magnetic%20Tunnel%20Junctions&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Esmaeili,%20A.%20M.&rft.date=2018-01-01&rft.volume=126&rft.issue=1&rft.spage=115&rft.epage=125&rft.pages=115-125&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776118010168&rft_dat=%3Cgale_osti_%3EA539035521%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011675077&rft_id=info:pmid/&rft_galeid=A539035521&rfr_iscdi=true