Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions
Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnet...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2018-01, Vol.126 (1), p.115-125 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 1 |
container_start_page | 115 |
container_title | Journal of experimental and theoretical physics |
container_volume | 126 |
creator | Esmaeili, A. M. Useinov, A. N. Useinov, N. Kh |
description | Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages. |
doi_str_mv | 10.1134/S1063776118010168 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22750056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539035521</galeid><sourcerecordid>A539035521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-9b091776fd743b230db0647f5370f4e07fcef60e8464369bb53df01de1d75a763</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEEqXwANwiceKQMo5je3OsFgpFBSR2OVuOM9662trBdiTgLXhjJgQEFUI-2PJ8_z_za6rqKYMzxnj3YsdAcqUkYxtgwOTmXnXCoIdGCujvL2_Jm6X-sHqU8w0AbFroT6rvL3HCMGKwmOvo6nKN9X4OAY_1O3MIWGLC7HMxBNQmjPVu8qHeJxOyw1TvY_o8Yx3DT-HOfyOXhdpG4kNJpniqke97E-JkUvH2SAhZrO7e_u72dg52gfPj6oEzx4xPft2n1aeLV_vtm-bqw-vL7flVYzumStMP0DMK5EbV8aHlMA4gO-UEV-A6BOUsOgm46WTHZT8Mgo8O2IhsVMIoyU-rZ6tvzMXrbH1Be20jDWOLblslAMRf1JQiJc1F38Q5BRpMt8CYJEwpos5W6mCOqH1wkaJbOiPeevJE5-n_XPAeuBAtI8HzOwJiCn4pBzPnrC93H--ybGVtijkndHpK_takr5qBXpav_1k-adpVk4kNB0x_xv6_6Af5E7A1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011675077</pqid></control><display><type>article</type><title>Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions</title><source>Springer Nature - Complete Springer Journals</source><creator>Esmaeili, A. M. ; Useinov, A. N. ; Useinov, N. Kh</creator><creatorcontrib>Esmaeili, A. M. ; Useinov, A. N. ; Useinov, N. Kh</creatorcontrib><description>Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776118010168</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Barriers ; Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Conduction electrons ; ELECTRIC POTENTIAL ; Electronic Properties of Solid ; Electrons ; Elementary Particles ; Ferromagnetism ; LAYERS ; Magnetic resonance ; MAGNETIC TUNNEL JUNCTIONS ; MAGNETORESISTANCE ; Magnetoresistivity ; MATERIALS SCIENCE ; Mathematical analysis ; NANOPARTICLES ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Resistance ; Solid State Physics ; SPIN ; Thickness ; TORQUE ; TUNNEL EFFECT ; Tunnel junctions ; Tunnel magnetoresistance</subject><ispartof>Journal of experimental and theoretical physics, 2018-01, Vol.126 (1), p.115-125</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-9b091776fd743b230db0647f5370f4e07fcef60e8464369bb53df01de1d75a763</citedby><cites>FETCH-LOGICAL-c417t-9b091776fd743b230db0647f5370f4e07fcef60e8464369bb53df01de1d75a763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776118010168$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776118010168$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22750056$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Esmaeili, A. M.</creatorcontrib><creatorcontrib>Useinov, A. N.</creatorcontrib><creatorcontrib>Useinov, N. Kh</creatorcontrib><title>Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.</description><subject>Barriers</subject><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Conduction electrons</subject><subject>ELECTRIC POTENTIAL</subject><subject>Electronic Properties of Solid</subject><subject>Electrons</subject><subject>Elementary Particles</subject><subject>Ferromagnetism</subject><subject>LAYERS</subject><subject>Magnetic resonance</subject><subject>MAGNETIC TUNNEL JUNCTIONS</subject><subject>MAGNETORESISTANCE</subject><subject>Magnetoresistivity</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>NANOPARTICLES</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Resistance</subject><subject>Solid State Physics</subject><subject>SPIN</subject><subject>Thickness</subject><subject>TORQUE</subject><subject>TUNNEL EFFECT</subject><subject>Tunnel junctions</subject><subject>Tunnel magnetoresistance</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhiMEEqXwANwiceKQMo5je3OsFgpFBSR2OVuOM9662trBdiTgLXhjJgQEFUI-2PJ8_z_za6rqKYMzxnj3YsdAcqUkYxtgwOTmXnXCoIdGCujvL2_Jm6X-sHqU8w0AbFroT6rvL3HCMGKwmOvo6nKN9X4OAY_1O3MIWGLC7HMxBNQmjPVu8qHeJxOyw1TvY_o8Yx3DT-HOfyOXhdpG4kNJpniqke97E-JkUvH2SAhZrO7e_u72dg52gfPj6oEzx4xPft2n1aeLV_vtm-bqw-vL7flVYzumStMP0DMK5EbV8aHlMA4gO-UEV-A6BOUsOgm46WTHZT8Mgo8O2IhsVMIoyU-rZ6tvzMXrbH1Be20jDWOLblslAMRf1JQiJc1F38Q5BRpMt8CYJEwpos5W6mCOqH1wkaJbOiPeevJE5-n_XPAeuBAtI8HzOwJiCn4pBzPnrC93H--ybGVtijkndHpK_takr5qBXpav_1k-adpVk4kNB0x_xv6_6Af5E7A1</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Esmaeili, A. M.</creator><creator>Useinov, A. N.</creator><creator>Useinov, N. Kh</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180101</creationdate><title>Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions</title><author>Esmaeili, A. M. ; Useinov, A. N. ; Useinov, N. Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-9b091776fd743b230db0647f5370f4e07fcef60e8464369bb53df01de1d75a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Barriers</topic><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Conduction electrons</topic><topic>ELECTRIC POTENTIAL</topic><topic>Electronic Properties of Solid</topic><topic>Electrons</topic><topic>Elementary Particles</topic><topic>Ferromagnetism</topic><topic>LAYERS</topic><topic>Magnetic resonance</topic><topic>MAGNETIC TUNNEL JUNCTIONS</topic><topic>MAGNETORESISTANCE</topic><topic>Magnetoresistivity</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>NANOPARTICLES</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Resistance</topic><topic>Solid State Physics</topic><topic>SPIN</topic><topic>Thickness</topic><topic>TORQUE</topic><topic>TUNNEL EFFECT</topic><topic>Tunnel junctions</topic><topic>Tunnel magnetoresistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esmaeili, A. M.</creatorcontrib><creatorcontrib>Useinov, A. N.</creatorcontrib><creatorcontrib>Useinov, N. Kh</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esmaeili, A. M.</au><au>Useinov, A. N.</au><au>Useinov, N. Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>126</volume><issue>1</issue><spage>115</spage><epage>125</epage><pages>115-125</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776118010168</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2018-01, Vol.126 (1), p.115-125 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_osti_scitechconnect_22750056 |
source | Springer Nature - Complete Springer Journals |
subjects | Barriers Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Conduction electrons ELECTRIC POTENTIAL Electronic Properties of Solid Electrons Elementary Particles Ferromagnetism LAYERS Magnetic resonance MAGNETIC TUNNEL JUNCTIONS MAGNETORESISTANCE Magnetoresistivity MATERIALS SCIENCE Mathematical analysis NANOPARTICLES Particle and Nuclear Physics Physics Physics and Astronomy Quantum Field Theory Relativity Theory Resistance Solid State Physics SPIN Thickness TORQUE TUNNEL EFFECT Tunnel junctions Tunnel magnetoresistance |
title | Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependences%20of%20the%20Tunnel%20Magnetoresistance%20and%20Spin%20Transfer%20Torque%20on%20the%20Sizes%20and%20Concentration%20of%20Nanoparticles%20in%20Magnetic%20Tunnel%20Junctions&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Esmaeili,%20A.%20M.&rft.date=2018-01-01&rft.volume=126&rft.issue=1&rft.spage=115&rft.epage=125&rft.pages=115-125&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776118010168&rft_dat=%3Cgale_osti_%3EA539035521%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011675077&rft_id=info:pmid/&rft_galeid=A539035521&rfr_iscdi=true |