Photoconductivity Amplification in a Type-II n-GaSb/InAs/p-GaSb Heterostructure with a Single QW
Significant photocurrent/photoconductivity amplification is observed at low reverse biases in a type-II n -GaSb/InAs/ p -GaSb heterostructure with a single quantum well (QW), grown by metal-organic vapor phase epitaxy. A sharp increase in the photocurrent by more than two orders of magnitude occurs...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2018-08, Vol.52 (8), p.1037-1042 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1042 |
---|---|
container_issue | 8 |
container_start_page | 1037 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 52 |
creator | Mikhailova, M. P. Andreev, I. A. Konovalov, G. G. Danilov, L. V. Ivanov, E. V. Kunitsyna, E. V. Il’inskaya, N. D. Levin, R. V. Pushnyi, B. V. Yakovlev, Yu. P. |
description | Significant photocurrent/photoconductivity amplification is observed at low reverse biases in a type-II
n
-GaSb/InAs/
p
-GaSb heterostructure with a single quantum well (QW), grown by metal-organic vapor phase epitaxy. A sharp increase in the photocurrent by more than two orders of magnitude occurs under exposure of the heterostructure to monochromatic light with a wavelength of 1.2–1.6 μm (at 77 K) and the application of a reverse bias in the range 5–200 mV. The optical gain depends on the applied voltage and increases to 2.5 × 10
2
at a reverse bias of 800 mV. Theoretical analysis demonstrated that the main role in the phenomenon is played by the screening of the external electric field by electrons accumulated in the deep InAs QW and by the mechanism of the tunneling transport of carriers with a small effective mass. It is shown that the effect under study is common to both isotype and anisotype type-II heterojunctions, including structures with QWs and superlattices. |
doi_str_mv | 10.1134/S1063782618080146 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22749841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A548321723</galeid><sourcerecordid>A548321723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c86b8b21df195b8d830ce48d554d1824c4912feb349079312da48d82cc64dcd43</originalsourceid><addsrcrecordid>eNp1kcFKAzEQhhdRsFYfwNuC520zSTabPZaitlBQacVj3E2ybUqbXZNU6dubWqEHcXKYIfN_w59MktwCGgAQOpwDYqTgmAFHHAFlZ0kPUIkyRovy_FAzkh36l8mV92uEAHhOe8n786oNrWyt2slgPk3Yp6NttzGNkVUwrU2NTat0se90Np2mNnus5vVwakd-2P3U6UQH7VofXOR3TqdfJqwiMTd2udHpy9t1ctFUG69vfnM_eX24X4wn2ezpcToezTJJOAmZ5KzmNQbVQJnXXHGCpKZc5TlVwDGVtATc6JrQEhUlAayq2OVYSkaVVJT0k7vj3OjFCC9N0HIV32W1DALjgpacwknVufZjp30Q63bnbDQmMGI5jcFQVA2OqmW10cLYpg2ukvEovTVxpm5MvB_llBMMBSYRgCMg41d4pxvRObOt3F4AEof9iD_7iQw-Mj5q7VK7k5X_oW8RxI8-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065444460</pqid></control><display><type>article</type><title>Photoconductivity Amplification in a Type-II n-GaSb/InAs/p-GaSb Heterostructure with a Single QW</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mikhailova, M. P. ; Andreev, I. A. ; Konovalov, G. G. ; Danilov, L. V. ; Ivanov, E. V. ; Kunitsyna, E. V. ; Il’inskaya, N. D. ; Levin, R. V. ; Pushnyi, B. V. ; Yakovlev, Yu. P.</creator><creatorcontrib>Mikhailova, M. P. ; Andreev, I. A. ; Konovalov, G. G. ; Danilov, L. V. ; Ivanov, E. V. ; Kunitsyna, E. V. ; Il’inskaya, N. D. ; Levin, R. V. ; Pushnyi, B. V. ; Yakovlev, Yu. P.</creatorcontrib><description>Significant photocurrent/photoconductivity amplification is observed at low reverse biases in a type-II
n
-GaSb/InAs/
p
-GaSb heterostructure with a single quantum well (QW), grown by metal-organic vapor phase epitaxy. A sharp increase in the photocurrent by more than two orders of magnitude occurs under exposure of the heterostructure to monochromatic light with a wavelength of 1.2–1.6 μm (at 77 K) and the application of a reverse bias in the range 5–200 mV. The optical gain depends on the applied voltage and increases to 2.5 × 10
2
at a reverse bias of 800 mV. Theoretical analysis demonstrated that the main role in the phenomenon is played by the screening of the external electric field by electrons accumulated in the deep InAs QW and by the mechanism of the tunneling transport of carriers with a small effective mass. It is shown that the effect under study is common to both isotype and anisotype type-II heterojunctions, including structures with QWs and superlattices.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782618080146</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplification ; Analysis ; Bias ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; EFFECTIVE MASS ; ELECTRIC FIELDS ; Epitaxial growth ; Heterojunctions ; INDIUM ARSENIDES ; Low-Dimensional Systems ; Magnetic Materials ; Magnetism ; MATERIALS SCIENCE ; Metalorganic chemical vapor deposition ; MONOCHROMATIC RADIATION ; ORGANOMETALLIC COMPOUNDS ; PHOTOCONDUCTIVITY ; Photoelectric effect ; Photoelectric emission ; Physics ; Physics and Astronomy ; Quantum Phenomena ; Quantum wells ; Semiconductor Structures ; Superlattices ; TUNNEL EFFECT ; VAPOR PHASE EPITAXY</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2018-08, Vol.52 (8), p.1037-1042</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c86b8b21df195b8d830ce48d554d1824c4912feb349079312da48d82cc64dcd43</citedby><cites>FETCH-LOGICAL-c383t-c86b8b21df195b8d830ce48d554d1824c4912feb349079312da48d82cc64dcd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782618080146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782618080146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22749841$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhailova, M. P.</creatorcontrib><creatorcontrib>Andreev, I. A.</creatorcontrib><creatorcontrib>Konovalov, G. G.</creatorcontrib><creatorcontrib>Danilov, L. V.</creatorcontrib><creatorcontrib>Ivanov, E. V.</creatorcontrib><creatorcontrib>Kunitsyna, E. V.</creatorcontrib><creatorcontrib>Il’inskaya, N. D.</creatorcontrib><creatorcontrib>Levin, R. V.</creatorcontrib><creatorcontrib>Pushnyi, B. V.</creatorcontrib><creatorcontrib>Yakovlev, Yu. P.</creatorcontrib><title>Photoconductivity Amplification in a Type-II n-GaSb/InAs/p-GaSb Heterostructure with a Single QW</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>Significant photocurrent/photoconductivity amplification is observed at low reverse biases in a type-II
n
-GaSb/InAs/
p
-GaSb heterostructure with a single quantum well (QW), grown by metal-organic vapor phase epitaxy. A sharp increase in the photocurrent by more than two orders of magnitude occurs under exposure of the heterostructure to monochromatic light with a wavelength of 1.2–1.6 μm (at 77 K) and the application of a reverse bias in the range 5–200 mV. The optical gain depends on the applied voltage and increases to 2.5 × 10
2
at a reverse bias of 800 mV. Theoretical analysis demonstrated that the main role in the phenomenon is played by the screening of the external electric field by electrons accumulated in the deep InAs QW and by the mechanism of the tunneling transport of carriers with a small effective mass. It is shown that the effect under study is common to both isotype and anisotype type-II heterojunctions, including structures with QWs and superlattices.</description><subject>Amplification</subject><subject>Analysis</subject><subject>Bias</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>EFFECTIVE MASS</subject><subject>ELECTRIC FIELDS</subject><subject>Epitaxial growth</subject><subject>Heterojunctions</subject><subject>INDIUM ARSENIDES</subject><subject>Low-Dimensional Systems</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>Metalorganic chemical vapor deposition</subject><subject>MONOCHROMATIC RADIATION</subject><subject>ORGANOMETALLIC COMPOUNDS</subject><subject>PHOTOCONDUCTIVITY</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Phenomena</subject><subject>Quantum wells</subject><subject>Semiconductor Structures</subject><subject>Superlattices</subject><subject>TUNNEL EFFECT</subject><subject>VAPOR PHASE EPITAXY</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFKAzEQhhdRsFYfwNuC520zSTabPZaitlBQacVj3E2ybUqbXZNU6dubWqEHcXKYIfN_w59MktwCGgAQOpwDYqTgmAFHHAFlZ0kPUIkyRovy_FAzkh36l8mV92uEAHhOe8n786oNrWyt2slgPk3Yp6NttzGNkVUwrU2NTat0se90Np2mNnus5vVwakd-2P3U6UQH7VofXOR3TqdfJqwiMTd2udHpy9t1ctFUG69vfnM_eX24X4wn2ezpcToezTJJOAmZ5KzmNQbVQJnXXHGCpKZc5TlVwDGVtATc6JrQEhUlAayq2OVYSkaVVJT0k7vj3OjFCC9N0HIV32W1DALjgpacwknVufZjp30Q63bnbDQmMGI5jcFQVA2OqmW10cLYpg2ukvEovTVxpm5MvB_llBMMBSYRgCMg41d4pxvRObOt3F4AEof9iD_7iQw-Mj5q7VK7k5X_oW8RxI8-</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Mikhailova, M. P.</creator><creator>Andreev, I. A.</creator><creator>Konovalov, G. G.</creator><creator>Danilov, L. V.</creator><creator>Ivanov, E. V.</creator><creator>Kunitsyna, E. V.</creator><creator>Il’inskaya, N. D.</creator><creator>Levin, R. V.</creator><creator>Pushnyi, B. V.</creator><creator>Yakovlev, Yu. P.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180801</creationdate><title>Photoconductivity Amplification in a Type-II n-GaSb/InAs/p-GaSb Heterostructure with a Single QW</title><author>Mikhailova, M. P. ; Andreev, I. A. ; Konovalov, G. G. ; Danilov, L. V. ; Ivanov, E. V. ; Kunitsyna, E. V. ; Il’inskaya, N. D. ; Levin, R. V. ; Pushnyi, B. V. ; Yakovlev, Yu. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c86b8b21df195b8d830ce48d554d1824c4912feb349079312da48d82cc64dcd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amplification</topic><topic>Analysis</topic><topic>Bias</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>EFFECTIVE MASS</topic><topic>ELECTRIC FIELDS</topic><topic>Epitaxial growth</topic><topic>Heterojunctions</topic><topic>INDIUM ARSENIDES</topic><topic>Low-Dimensional Systems</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>Metalorganic chemical vapor deposition</topic><topic>MONOCHROMATIC RADIATION</topic><topic>ORGANOMETALLIC COMPOUNDS</topic><topic>PHOTOCONDUCTIVITY</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Phenomena</topic><topic>Quantum wells</topic><topic>Semiconductor Structures</topic><topic>Superlattices</topic><topic>TUNNEL EFFECT</topic><topic>VAPOR PHASE EPITAXY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailova, M. P.</creatorcontrib><creatorcontrib>Andreev, I. A.</creatorcontrib><creatorcontrib>Konovalov, G. G.</creatorcontrib><creatorcontrib>Danilov, L. V.</creatorcontrib><creatorcontrib>Ivanov, E. V.</creatorcontrib><creatorcontrib>Kunitsyna, E. V.</creatorcontrib><creatorcontrib>Il’inskaya, N. D.</creatorcontrib><creatorcontrib>Levin, R. V.</creatorcontrib><creatorcontrib>Pushnyi, B. V.</creatorcontrib><creatorcontrib>Yakovlev, Yu. P.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailova, M. P.</au><au>Andreev, I. A.</au><au>Konovalov, G. G.</au><au>Danilov, L. V.</au><au>Ivanov, E. V.</au><au>Kunitsyna, E. V.</au><au>Il’inskaya, N. D.</au><au>Levin, R. V.</au><au>Pushnyi, B. V.</au><au>Yakovlev, Yu. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoconductivity Amplification in a Type-II n-GaSb/InAs/p-GaSb Heterostructure with a Single QW</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>52</volume><issue>8</issue><spage>1037</spage><epage>1042</epage><pages>1037-1042</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>Significant photocurrent/photoconductivity amplification is observed at low reverse biases in a type-II
n
-GaSb/InAs/
p
-GaSb heterostructure with a single quantum well (QW), grown by metal-organic vapor phase epitaxy. A sharp increase in the photocurrent by more than two orders of magnitude occurs under exposure of the heterostructure to monochromatic light with a wavelength of 1.2–1.6 μm (at 77 K) and the application of a reverse bias in the range 5–200 mV. The optical gain depends on the applied voltage and increases to 2.5 × 10
2
at a reverse bias of 800 mV. Theoretical analysis demonstrated that the main role in the phenomenon is played by the screening of the external electric field by electrons accumulated in the deep InAs QW and by the mechanism of the tunneling transport of carriers with a small effective mass. It is shown that the effect under study is common to both isotype and anisotype type-II heterojunctions, including structures with QWs and superlattices.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782618080146</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2018-08, Vol.52 (8), p.1037-1042 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_osti_scitechconnect_22749841 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amplification Analysis Bias CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY EFFECTIVE MASS ELECTRIC FIELDS Epitaxial growth Heterojunctions INDIUM ARSENIDES Low-Dimensional Systems Magnetic Materials Magnetism MATERIALS SCIENCE Metalorganic chemical vapor deposition MONOCHROMATIC RADIATION ORGANOMETALLIC COMPOUNDS PHOTOCONDUCTIVITY Photoelectric effect Photoelectric emission Physics Physics and Astronomy Quantum Phenomena Quantum wells Semiconductor Structures Superlattices TUNNEL EFFECT VAPOR PHASE EPITAXY |
title | Photoconductivity Amplification in a Type-II n-GaSb/InAs/p-GaSb Heterostructure with a Single QW |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoconductivity%20Amplification%20in%20a%20Type-II%20n-GaSb/InAs/p-GaSb%20Heterostructure%20with%20a%20Single%20QW&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Mikhailova,%20M.%20P.&rft.date=2018-08-01&rft.volume=52&rft.issue=8&rft.spage=1037&rft.epage=1042&rft.pages=1037-1042&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782618080146&rft_dat=%3Cgale_osti_%3EA548321723%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065444460&rft_id=info:pmid/&rft_galeid=A548321723&rfr_iscdi=true |