Clinical applications of 3-dimensional printing in radiation therapy

Abstract Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical dosimetry : official journal of the American Association of Medical Dosimetrists 2017, Vol.42 (2), p.150-155
Hauptverfasser: Zhao, Yizhou, M.D, Moran, Kathryn, B.Sc., RT(T), Yewondwossen, Mammo, Ph.D, Allan, James, B.Sc, Clarke, Scott, M.Sc, Rajaraman, Murali, M.D, Wilke, Derek, M.D., M.Sc, Joseph, Paul, M.D, Robar, James L., Ph.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 2
container_start_page 150
container_title Medical dosimetry : official journal of the American Association of Medical Dosimetrists
container_volume 42
creator Zhao, Yizhou, M.D
Moran, Kathryn, B.Sc., RT(T)
Yewondwossen, Mammo, Ph.D
Allan, James, B.Sc
Clarke, Scott, M.Sc
Rajaraman, Murali, M.D
Wilke, Derek, M.D., M.Sc
Joseph, Paul, M.D
Robar, James L., Ph.D
description Abstract Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D printing in clinical radiation oncology through a selection of patient cases, namely, to create bolus for photon and modulated electron radiotherapy (MERT), as well as applicators for surface high-dose rate (HDR) brachytherapy. Photon boluses were 3D-printed to treat a recurrent squamous cell carcinoma (SCC) of the nasal septum and a basal cell carcinoma (BCC) of the posterior pinna. For a patient with a mycosis fungoides involving the upper face, a 3D-printed MERT bolus was used. To treat an SCC of the nose, a 3D-printed applicator for surface brachytherapy was made. The structures' fit to the anatomy and the radiotherapy treatment plans were assessed. Based on the treatment planning computed tomography (CT), the size of the largest air gap at the interface of the 3D-printed structure was 3 mm for the SCC of the nasal septum, 3 mm for the BCC of the pinna, 2 mm for the mycosis fungoides of the face, and 2 mm for the SCC of the nose. Acceptable treatment plans were obtained for the SCC of the nasal septum (95% isodose to 99.8% of planning target volume [PTV]), the BCC of the pinna (95% isodose to 97.7% of PTV), and the mycosis fungoides of the face (90% isodose to 92.5% of PTV). For the latter, compared with a plan with a uniform thickness bolus, the one featuring the MERT bolus achieved relative sparing of all the organs at risk (OARs) distal to the target volume, while maintaining similar target volume coverage. The surface brachytherapy plan for the SCC of the nose had adequate coverage (95% isodose to 95.6% of clinical target volume [CTV]), but a relatively high dose to the left eye, owing to its proximity to the tumor. 3D printing can be implemented effectively in the clinical setting to create highly conformal bolus for photon and MERT, as well as applicators for surface brachytherapy.
doi_str_mv 10.1016/j.meddos.2017.03.001
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22685197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958394717300328</els_id><sourcerecordid>1899109936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-7bdba552da6770b98c0a53f77e9ef6de9e751e3a7312d6796d480ea33155d5cc3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi1ERaeFN0AoEhs2SY_tOI43SGigUKkSC2BteewT6iFjBztTad4ehwws2LDxRec7t_8n5CWFhgLtbvbNAZ2LuWFAZQO8AaBPyIb2ktctMPaUbECJvuaqlZfkKuc9AIgW-DNyyfpWCeB8Q95vRx-8NWNlpmksj9nHkKs4VLx2_oAhl3-JTsmH2YfvlQ9VMs7_5qr5AZOZTs_JxWDGjC_O9zX5dvvh6_ZTff_549323X1tBaVzLXduZ4RgznRSwk71Fozgg5SocOhcOaWgyI3klLlOqs61PaDhnArhhLX8mrxe68Y8e52tn9E-2BgC2lkz1vWCKlmoNys1pfjziHnWB58tjqMJGI9Z014pCkrxrqDtitoUc0446LLnwaSTpqAXlfVeryrrRWUNXBeVS9qrc4fjroT_Jv2RtQBvVwCLGo8e0zIsBovOp2VWF_3_OvxbwJ59-oEnzPt4TMWVsovOTIP-sji9GE0lB-Cs578A5xajyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899109936</pqid></control><display><type>article</type><title>Clinical applications of 3-dimensional printing in radiation therapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Yizhou, M.D ; Moran, Kathryn, B.Sc., RT(T) ; Yewondwossen, Mammo, Ph.D ; Allan, James, B.Sc ; Clarke, Scott, M.Sc ; Rajaraman, Murali, M.D ; Wilke, Derek, M.D., M.Sc ; Joseph, Paul, M.D ; Robar, James L., Ph.D</creator><creatorcontrib>Zhao, Yizhou, M.D ; Moran, Kathryn, B.Sc., RT(T) ; Yewondwossen, Mammo, Ph.D ; Allan, James, B.Sc ; Clarke, Scott, M.Sc ; Rajaraman, Murali, M.D ; Wilke, Derek, M.D., M.Sc ; Joseph, Paul, M.D ; Robar, James L., Ph.D</creatorcontrib><description>Abstract Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D printing in clinical radiation oncology through a selection of patient cases, namely, to create bolus for photon and modulated electron radiotherapy (MERT), as well as applicators for surface high-dose rate (HDR) brachytherapy. Photon boluses were 3D-printed to treat a recurrent squamous cell carcinoma (SCC) of the nasal septum and a basal cell carcinoma (BCC) of the posterior pinna. For a patient with a mycosis fungoides involving the upper face, a 3D-printed MERT bolus was used. To treat an SCC of the nose, a 3D-printed applicator for surface brachytherapy was made. The structures' fit to the anatomy and the radiotherapy treatment plans were assessed. Based on the treatment planning computed tomography (CT), the size of the largest air gap at the interface of the 3D-printed structure was 3 mm for the SCC of the nasal septum, 3 mm for the BCC of the pinna, 2 mm for the mycosis fungoides of the face, and 2 mm for the SCC of the nose. Acceptable treatment plans were obtained for the SCC of the nasal septum (95% isodose to 99.8% of planning target volume [PTV]), the BCC of the pinna (95% isodose to 97.7% of PTV), and the mycosis fungoides of the face (90% isodose to 92.5% of PTV). For the latter, compared with a plan with a uniform thickness bolus, the one featuring the MERT bolus achieved relative sparing of all the organs at risk (OARs) distal to the target volume, while maintaining similar target volume coverage. The surface brachytherapy plan for the SCC of the nose had adequate coverage (95% isodose to 95.6% of clinical target volume [CTV]), but a relatively high dose to the left eye, owing to its proximity to the tumor. 3D printing can be implemented effectively in the clinical setting to create highly conformal bolus for photon and MERT, as well as applicators for surface brachytherapy.</description><identifier>ISSN: 0958-3947</identifier><identifier>EISSN: 1873-4022</identifier><identifier>DOI: 10.1016/j.meddos.2017.03.001</identifier><identifier>PMID: 28495033</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3D printing ; ANATOMY ; Biomimetic Materials ; Bolus ; BRACHYTHERAPY ; Brachytherapy - instrumentation ; Brachytherapy applicator ; CARCINOMAS ; COMPARATIVE EVALUATIONS ; COMPLEXES ; COMPUTERIZED TOMOGRAPHY ; DOSE RATES ; Equipment Design ; EYES ; FABRICATION ; Female ; HAZARDS ; Hematology, Oncology and Palliative Medicine ; Humans ; INTERFACES ; Male ; Modulated electron radiotherapy ; MYCOSES ; Neoplasms - radiotherapy ; NOSE ; PATIENTS ; PHOTONS ; PLANNING ; Printing, Three-Dimensional ; RADIATION DOSES ; Radiation Protection - instrumentation ; RADIATION PROTECTION AND DOSIMETRY ; Radiology ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, Intensity-Modulated - instrumentation ; Radiotherapy, Intensity-Modulated - methods ; Surface brachytherapy ; THICKNESS</subject><ispartof>Medical dosimetry : official journal of the American Association of Medical Dosimetrists, 2017, Vol.42 (2), p.150-155</ispartof><rights>American Association of Medical Dosimetrists</rights><rights>2017 American Association of Medical Dosimetrists</rights><rights>Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-7bdba552da6770b98c0a53f77e9ef6de9e751e3a7312d6796d480ea33155d5cc3</citedby><cites>FETCH-LOGICAL-c511t-7bdba552da6770b98c0a53f77e9ef6de9e751e3a7312d6796d480ea33155d5cc3</cites><orcidid>0000-0001-5334-8711 ; 0000-0001-9007-8001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.meddos.2017.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28495033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22685197$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yizhou, M.D</creatorcontrib><creatorcontrib>Moran, Kathryn, B.Sc., RT(T)</creatorcontrib><creatorcontrib>Yewondwossen, Mammo, Ph.D</creatorcontrib><creatorcontrib>Allan, James, B.Sc</creatorcontrib><creatorcontrib>Clarke, Scott, M.Sc</creatorcontrib><creatorcontrib>Rajaraman, Murali, M.D</creatorcontrib><creatorcontrib>Wilke, Derek, M.D., M.Sc</creatorcontrib><creatorcontrib>Joseph, Paul, M.D</creatorcontrib><creatorcontrib>Robar, James L., Ph.D</creatorcontrib><title>Clinical applications of 3-dimensional printing in radiation therapy</title><title>Medical dosimetry : official journal of the American Association of Medical Dosimetrists</title><addtitle>Med Dosim</addtitle><description>Abstract Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D printing in clinical radiation oncology through a selection of patient cases, namely, to create bolus for photon and modulated electron radiotherapy (MERT), as well as applicators for surface high-dose rate (HDR) brachytherapy. Photon boluses were 3D-printed to treat a recurrent squamous cell carcinoma (SCC) of the nasal septum and a basal cell carcinoma (BCC) of the posterior pinna. For a patient with a mycosis fungoides involving the upper face, a 3D-printed MERT bolus was used. To treat an SCC of the nose, a 3D-printed applicator for surface brachytherapy was made. The structures' fit to the anatomy and the radiotherapy treatment plans were assessed. Based on the treatment planning computed tomography (CT), the size of the largest air gap at the interface of the 3D-printed structure was 3 mm for the SCC of the nasal septum, 3 mm for the BCC of the pinna, 2 mm for the mycosis fungoides of the face, and 2 mm for the SCC of the nose. Acceptable treatment plans were obtained for the SCC of the nasal septum (95% isodose to 99.8% of planning target volume [PTV]), the BCC of the pinna (95% isodose to 97.7% of PTV), and the mycosis fungoides of the face (90% isodose to 92.5% of PTV). For the latter, compared with a plan with a uniform thickness bolus, the one featuring the MERT bolus achieved relative sparing of all the organs at risk (OARs) distal to the target volume, while maintaining similar target volume coverage. The surface brachytherapy plan for the SCC of the nose had adequate coverage (95% isodose to 95.6% of clinical target volume [CTV]), but a relatively high dose to the left eye, owing to its proximity to the tumor. 3D printing can be implemented effectively in the clinical setting to create highly conformal bolus for photon and MERT, as well as applicators for surface brachytherapy.</description><subject>3D printing</subject><subject>ANATOMY</subject><subject>Biomimetic Materials</subject><subject>Bolus</subject><subject>BRACHYTHERAPY</subject><subject>Brachytherapy - instrumentation</subject><subject>Brachytherapy applicator</subject><subject>CARCINOMAS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>COMPLEXES</subject><subject>COMPUTERIZED TOMOGRAPHY</subject><subject>DOSE RATES</subject><subject>Equipment Design</subject><subject>EYES</subject><subject>FABRICATION</subject><subject>Female</subject><subject>HAZARDS</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>INTERFACES</subject><subject>Male</subject><subject>Modulated electron radiotherapy</subject><subject>MYCOSES</subject><subject>Neoplasms - radiotherapy</subject><subject>NOSE</subject><subject>PATIENTS</subject><subject>PHOTONS</subject><subject>PLANNING</subject><subject>Printing, Three-Dimensional</subject><subject>RADIATION DOSES</subject><subject>Radiation Protection - instrumentation</subject><subject>RADIATION PROTECTION AND DOSIMETRY</subject><subject>Radiology</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, Intensity-Modulated - instrumentation</subject><subject>Radiotherapy, Intensity-Modulated - methods</subject><subject>Surface brachytherapy</subject><subject>THICKNESS</subject><issn>0958-3947</issn><issn>1873-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi1ERaeFN0AoEhs2SY_tOI43SGigUKkSC2BteewT6iFjBztTad4ehwws2LDxRec7t_8n5CWFhgLtbvbNAZ2LuWFAZQO8AaBPyIb2ktctMPaUbECJvuaqlZfkKuc9AIgW-DNyyfpWCeB8Q95vRx-8NWNlpmksj9nHkKs4VLx2_oAhl3-JTsmH2YfvlQ9VMs7_5qr5AZOZTs_JxWDGjC_O9zX5dvvh6_ZTff_549323X1tBaVzLXduZ4RgznRSwk71Fozgg5SocOhcOaWgyI3klLlOqs61PaDhnArhhLX8mrxe68Y8e52tn9E-2BgC2lkz1vWCKlmoNys1pfjziHnWB58tjqMJGI9Z014pCkrxrqDtitoUc0446LLnwaSTpqAXlfVeryrrRWUNXBeVS9qrc4fjroT_Jv2RtQBvVwCLGo8e0zIsBovOp2VWF_3_OvxbwJ59-oEnzPt4TMWVsovOTIP-sji9GE0lB-Cs578A5xajyg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Zhao, Yizhou, M.D</creator><creator>Moran, Kathryn, B.Sc., RT(T)</creator><creator>Yewondwossen, Mammo, Ph.D</creator><creator>Allan, James, B.Sc</creator><creator>Clarke, Scott, M.Sc</creator><creator>Rajaraman, Murali, M.D</creator><creator>Wilke, Derek, M.D., M.Sc</creator><creator>Joseph, Paul, M.D</creator><creator>Robar, James L., Ph.D</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5334-8711</orcidid><orcidid>https://orcid.org/0000-0001-9007-8001</orcidid></search><sort><creationdate>2017</creationdate><title>Clinical applications of 3-dimensional printing in radiation therapy</title><author>Zhao, Yizhou, M.D ; Moran, Kathryn, B.Sc., RT(T) ; Yewondwossen, Mammo, Ph.D ; Allan, James, B.Sc ; Clarke, Scott, M.Sc ; Rajaraman, Murali, M.D ; Wilke, Derek, M.D., M.Sc ; Joseph, Paul, M.D ; Robar, James L., Ph.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-7bdba552da6770b98c0a53f77e9ef6de9e751e3a7312d6796d480ea33155d5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3D printing</topic><topic>ANATOMY</topic><topic>Biomimetic Materials</topic><topic>Bolus</topic><topic>BRACHYTHERAPY</topic><topic>Brachytherapy - instrumentation</topic><topic>Brachytherapy applicator</topic><topic>CARCINOMAS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>COMPLEXES</topic><topic>COMPUTERIZED TOMOGRAPHY</topic><topic>DOSE RATES</topic><topic>Equipment Design</topic><topic>EYES</topic><topic>FABRICATION</topic><topic>Female</topic><topic>HAZARDS</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>INTERFACES</topic><topic>Male</topic><topic>Modulated electron radiotherapy</topic><topic>MYCOSES</topic><topic>Neoplasms - radiotherapy</topic><topic>NOSE</topic><topic>PATIENTS</topic><topic>PHOTONS</topic><topic>PLANNING</topic><topic>Printing, Three-Dimensional</topic><topic>RADIATION DOSES</topic><topic>Radiation Protection - instrumentation</topic><topic>RADIATION PROTECTION AND DOSIMETRY</topic><topic>Radiology</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, Intensity-Modulated - instrumentation</topic><topic>Radiotherapy, Intensity-Modulated - methods</topic><topic>Surface brachytherapy</topic><topic>THICKNESS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yizhou, M.D</creatorcontrib><creatorcontrib>Moran, Kathryn, B.Sc., RT(T)</creatorcontrib><creatorcontrib>Yewondwossen, Mammo, Ph.D</creatorcontrib><creatorcontrib>Allan, James, B.Sc</creatorcontrib><creatorcontrib>Clarke, Scott, M.Sc</creatorcontrib><creatorcontrib>Rajaraman, Murali, M.D</creatorcontrib><creatorcontrib>Wilke, Derek, M.D., M.Sc</creatorcontrib><creatorcontrib>Joseph, Paul, M.D</creatorcontrib><creatorcontrib>Robar, James L., Ph.D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical dosimetry : official journal of the American Association of Medical Dosimetrists</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yizhou, M.D</au><au>Moran, Kathryn, B.Sc., RT(T)</au><au>Yewondwossen, Mammo, Ph.D</au><au>Allan, James, B.Sc</au><au>Clarke, Scott, M.Sc</au><au>Rajaraman, Murali, M.D</au><au>Wilke, Derek, M.D., M.Sc</au><au>Joseph, Paul, M.D</au><au>Robar, James L., Ph.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical applications of 3-dimensional printing in radiation therapy</atitle><jtitle>Medical dosimetry : official journal of the American Association of Medical Dosimetrists</jtitle><addtitle>Med Dosim</addtitle><date>2017</date><risdate>2017</risdate><volume>42</volume><issue>2</issue><spage>150</spage><epage>155</epage><pages>150-155</pages><issn>0958-3947</issn><eissn>1873-4022</eissn><abstract>Abstract Three-dimensional (3D) printing is suitable for the fabrication of complex radiotherapy bolus. Although investigated from dosimetric and feasibility standpoints, there are few reports to date of its use for actual patient treatment. This study illustrates the versatile applications of 3D printing in clinical radiation oncology through a selection of patient cases, namely, to create bolus for photon and modulated electron radiotherapy (MERT), as well as applicators for surface high-dose rate (HDR) brachytherapy. Photon boluses were 3D-printed to treat a recurrent squamous cell carcinoma (SCC) of the nasal septum and a basal cell carcinoma (BCC) of the posterior pinna. For a patient with a mycosis fungoides involving the upper face, a 3D-printed MERT bolus was used. To treat an SCC of the nose, a 3D-printed applicator for surface brachytherapy was made. The structures' fit to the anatomy and the radiotherapy treatment plans were assessed. Based on the treatment planning computed tomography (CT), the size of the largest air gap at the interface of the 3D-printed structure was 3 mm for the SCC of the nasal septum, 3 mm for the BCC of the pinna, 2 mm for the mycosis fungoides of the face, and 2 mm for the SCC of the nose. Acceptable treatment plans were obtained for the SCC of the nasal septum (95% isodose to 99.8% of planning target volume [PTV]), the BCC of the pinna (95% isodose to 97.7% of PTV), and the mycosis fungoides of the face (90% isodose to 92.5% of PTV). For the latter, compared with a plan with a uniform thickness bolus, the one featuring the MERT bolus achieved relative sparing of all the organs at risk (OARs) distal to the target volume, while maintaining similar target volume coverage. The surface brachytherapy plan for the SCC of the nose had adequate coverage (95% isodose to 95.6% of clinical target volume [CTV]), but a relatively high dose to the left eye, owing to its proximity to the tumor. 3D printing can be implemented effectively in the clinical setting to create highly conformal bolus for photon and MERT, as well as applicators for surface brachytherapy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28495033</pmid><doi>10.1016/j.meddos.2017.03.001</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5334-8711</orcidid><orcidid>https://orcid.org/0000-0001-9007-8001</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0958-3947
ispartof Medical dosimetry : official journal of the American Association of Medical Dosimetrists, 2017, Vol.42 (2), p.150-155
issn 0958-3947
1873-4022
language eng
recordid cdi_osti_scitechconnect_22685197
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects 3D printing
ANATOMY
Biomimetic Materials
Bolus
BRACHYTHERAPY
Brachytherapy - instrumentation
Brachytherapy applicator
CARCINOMAS
COMPARATIVE EVALUATIONS
COMPLEXES
COMPUTERIZED TOMOGRAPHY
DOSE RATES
Equipment Design
EYES
FABRICATION
Female
HAZARDS
Hematology, Oncology and Palliative Medicine
Humans
INTERFACES
Male
Modulated electron radiotherapy
MYCOSES
Neoplasms - radiotherapy
NOSE
PATIENTS
PHOTONS
PLANNING
Printing, Three-Dimensional
RADIATION DOSES
Radiation Protection - instrumentation
RADIATION PROTECTION AND DOSIMETRY
Radiology
RADIOLOGY AND NUCLEAR MEDICINE
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Intensity-Modulated - instrumentation
Radiotherapy, Intensity-Modulated - methods
Surface brachytherapy
THICKNESS
title Clinical applications of 3-dimensional printing in radiation therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20applications%20of%203-dimensional%20printing%20in%20radiation%20therapy&rft.jtitle=Medical%20dosimetry%20:%20official%20journal%20of%20the%20American%20Association%20of%20Medical%20Dosimetrists&rft.au=Zhao,%20Yizhou,%20M.D&rft.date=2017&rft.volume=42&rft.issue=2&rft.spage=150&rft.epage=155&rft.pages=150-155&rft.issn=0958-3947&rft.eissn=1873-4022&rft_id=info:doi/10.1016/j.meddos.2017.03.001&rft_dat=%3Cproquest_osti_%3E1899109936%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899109936&rft_id=info:pmid/28495033&rft_els_id=S0958394717300328&rfr_iscdi=true