KELVIN-HELMHOLTZ INSTABILITY IN SOLAR CHROMOSPHERIC JETS: THEORY AND OBSERVATION

ABSTRACT Using data obtained by the high-resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1 m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at the disk center. Small-scale features, such as rapid redshifted and blueshifted ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2016-10, Vol.830 (2), p.133
Hauptverfasser: Kuridze, D., Zaqarashvili, T. V., Henriques, V., Mathioudakis, M., Keenan, F. P., Hanslmeier, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 133
container_title The Astrophysical journal
container_volume 830
creator Kuridze, D.
Zaqarashvili, T. V.
Henriques, V.
Mathioudakis, M.
Keenan, F. P.
Hanslmeier, A.
description ABSTRACT Using data obtained by the high-resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1 m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at the disk center. Small-scale features, such as rapid redshifted and blueshifted excursions, appearing as high-speed jets in the wings of the H line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin-Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated with the KHI could be observed as a broadening of chromospheric spectral lines. Analysis of the H line profiles shows that the detected structures have enhanced line widths with respect to the background. We also investigate the stability of a larger-scale H jet that was ejected along the line of sight. Vortex-like features, rapidly developing around the jet's boundary, are considered as evidence of the KHI. The analysis of the energy equation in the partially ionized plasma shows that ion-neutral collisions may lead to fast heating of the KH vortices over timescales comparable to the lifetime of chromospheric jets.
doi_str_mv 10.3847/0004-637X/830/2/133
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22667307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365846975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-826671162d259c9e623069aad6c2bd50c8d8af7784ec0ff12cb6e3baabd898453</originalsourceid><addsrcrecordid>eNp9kEFPgzAYQBujiXP6C7yQGI9IaaEt3thEQRldABfnpYECkUUHUnbw3wuZcRfjqV-T9718eQBcmvAGM4saEEJLJ5i-GAxDAxkmxkdgYtqY6Ra26TGY_BKn4EypzfhFjjMByycvXAWR7nvhwudh-qoFUZK6syAM0vUwawkP3Vib-zFf8GTpe3Ew1x69NLnVUt_j8VpzozuNzxIvXrlpwKNzcFJl76q8-Hmn4PneS-e-HvKHYO6GurRt0usMEUJNk6AC2Y50SoIwJE6WFUSivLChZAXLKkqZVUpYVSaSOSlxnmV5wRxm2XgKrvbeRvW1ULLuS_kmm-22lL1Aox1DeqDarvnclaoXm2bXbYfDBMLEZhZx6OjCe0p2jVJdWYm2qz-y7kuYUIyBxdhLjPnEEFggMQQetq73W3XTHrRZuzkwoi2qgTP-4P4zfwPO64Du</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365846975</pqid></control><display><type>article</type><title>KELVIN-HELMHOLTZ INSTABILITY IN SOLAR CHROMOSPHERIC JETS: THEORY AND OBSERVATION</title><source>IOP Publishing Free Content</source><creator>Kuridze, D. ; Zaqarashvili, T. V. ; Henriques, V. ; Mathioudakis, M. ; Keenan, F. P. ; Hanslmeier, A.</creator><creatorcontrib>Kuridze, D. ; Zaqarashvili, T. V. ; Henriques, V. ; Mathioudakis, M. ; Keenan, F. P. ; Hanslmeier, A.</creatorcontrib><description>ABSTRACT Using data obtained by the high-resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1 m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at the disk center. Small-scale features, such as rapid redshifted and blueshifted excursions, appearing as high-speed jets in the wings of the H line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin-Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated with the KHI could be observed as a broadening of chromospheric spectral lines. Analysis of the H line profiles shows that the detected structures have enhanced line widths with respect to the background. We also investigate the stability of a larger-scale H jet that was ejected along the line of sight. Vortex-like features, rapidly developing around the jet's boundary, are considered as evidence of the KHI. The analysis of the energy equation in the partially ionized plasma shows that ion-neutral collisions may lead to fast heating of the KH vortices over timescales comparable to the lifetime of chromospheric jets.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/0004-637X/830/2/133</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>ANALYTICAL SOLUTION ; APPROXIMATIONS ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BALMER LINES ; CHROMOSPHERE ; COLLISIONS ; COMPARATIVE EVALUATIONS ; Computational fluid dynamics ; Dispersion ; DISPERSIONS ; Dynamic stability ; Energy equation ; Exact solutions ; Fluid flow ; H alpha line ; HELMHOLTZ INSTABILITY ; Image resolution ; Instability ; Jets ; Kelvin-Helmholtz instability ; LIFETIME ; Line spectra ; LINE WIDTHS ; MAGNETIC FLUX ; Magnetohydrodynamic turbulence ; MAGNETOHYDRODYNAMICS ; magnetohydrodynamics (MHD) ; methods: analytical ; PLASMA ; RED SHIFT ; RESOLUTION ; SPECTROSCOPY ; SUN ; Sun: atmosphere ; Sun: chromosphere ; Sun: transition region ; techniques: imaging spectroscopy ; TELESCOPES ; Tubes ; TURBULENT FLOW ; VELOCITY ; Vortices</subject><ispartof>The Astrophysical journal, 2016-10, Vol.830 (2), p.133</ispartof><rights>2016. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Oct 20, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-826671162d259c9e623069aad6c2bd50c8d8af7784ec0ff12cb6e3baabd898453</citedby><cites>FETCH-LOGICAL-c556t-826671162d259c9e623069aad6c2bd50c8d8af7784ec0ff12cb6e3baabd898453</cites><orcidid>0000-0003-2760-2311 ; 0000-0001-5015-5762 ; 0000-0002-4024-7732 ; 0000-0001-5435-1170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/0004-637X/830/2/133/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/0004-637X/830/2/133$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22667307$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuridze, D.</creatorcontrib><creatorcontrib>Zaqarashvili, T. V.</creatorcontrib><creatorcontrib>Henriques, V.</creatorcontrib><creatorcontrib>Mathioudakis, M.</creatorcontrib><creatorcontrib>Keenan, F. P.</creatorcontrib><creatorcontrib>Hanslmeier, A.</creatorcontrib><title>KELVIN-HELMHOLTZ INSTABILITY IN SOLAR CHROMOSPHERIC JETS: THEORY AND OBSERVATION</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT Using data obtained by the high-resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1 m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at the disk center. Small-scale features, such as rapid redshifted and blueshifted excursions, appearing as high-speed jets in the wings of the H line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin-Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated with the KHI could be observed as a broadening of chromospheric spectral lines. Analysis of the H line profiles shows that the detected structures have enhanced line widths with respect to the background. We also investigate the stability of a larger-scale H jet that was ejected along the line of sight. Vortex-like features, rapidly developing around the jet's boundary, are considered as evidence of the KHI. The analysis of the energy equation in the partially ionized plasma shows that ion-neutral collisions may lead to fast heating of the KH vortices over timescales comparable to the lifetime of chromospheric jets.</description><subject>ANALYTICAL SOLUTION</subject><subject>APPROXIMATIONS</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BALMER LINES</subject><subject>CHROMOSPHERE</subject><subject>COLLISIONS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computational fluid dynamics</subject><subject>Dispersion</subject><subject>DISPERSIONS</subject><subject>Dynamic stability</subject><subject>Energy equation</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>H alpha line</subject><subject>HELMHOLTZ INSTABILITY</subject><subject>Image resolution</subject><subject>Instability</subject><subject>Jets</subject><subject>Kelvin-Helmholtz instability</subject><subject>LIFETIME</subject><subject>Line spectra</subject><subject>LINE WIDTHS</subject><subject>MAGNETIC FLUX</subject><subject>Magnetohydrodynamic turbulence</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>magnetohydrodynamics (MHD)</subject><subject>methods: analytical</subject><subject>PLASMA</subject><subject>RED SHIFT</subject><subject>RESOLUTION</subject><subject>SPECTROSCOPY</subject><subject>SUN</subject><subject>Sun: atmosphere</subject><subject>Sun: chromosphere</subject><subject>Sun: transition region</subject><subject>techniques: imaging spectroscopy</subject><subject>TELESCOPES</subject><subject>Tubes</subject><subject>TURBULENT FLOW</subject><subject>VELOCITY</subject><subject>Vortices</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPgzAYQBujiXP6C7yQGI9IaaEt3thEQRldABfnpYECkUUHUnbw3wuZcRfjqV-T9718eQBcmvAGM4saEEJLJ5i-GAxDAxkmxkdgYtqY6Ra26TGY_BKn4EypzfhFjjMByycvXAWR7nvhwudh-qoFUZK6syAM0vUwawkP3Vib-zFf8GTpe3Ew1x69NLnVUt_j8VpzozuNzxIvXrlpwKNzcFJl76q8-Hmn4PneS-e-HvKHYO6GurRt0usMEUJNk6AC2Y50SoIwJE6WFUSivLChZAXLKkqZVUpYVSaSOSlxnmV5wRxm2XgKrvbeRvW1ULLuS_kmm-22lL1Aox1DeqDarvnclaoXm2bXbYfDBMLEZhZx6OjCe0p2jVJdWYm2qz-y7kuYUIyBxdhLjPnEEFggMQQetq73W3XTHrRZuzkwoi2qgTP-4P4zfwPO64Du</recordid><startdate>20161020</startdate><enddate>20161020</enddate><creator>Kuridze, D.</creator><creator>Zaqarashvili, T. V.</creator><creator>Henriques, V.</creator><creator>Mathioudakis, M.</creator><creator>Keenan, F. P.</creator><creator>Hanslmeier, A.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2760-2311</orcidid><orcidid>https://orcid.org/0000-0001-5015-5762</orcidid><orcidid>https://orcid.org/0000-0002-4024-7732</orcidid><orcidid>https://orcid.org/0000-0001-5435-1170</orcidid></search><sort><creationdate>20161020</creationdate><title>KELVIN-HELMHOLTZ INSTABILITY IN SOLAR CHROMOSPHERIC JETS: THEORY AND OBSERVATION</title><author>Kuridze, D. ; Zaqarashvili, T. V. ; Henriques, V. ; Mathioudakis, M. ; Keenan, F. P. ; Hanslmeier, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-826671162d259c9e623069aad6c2bd50c8d8af7784ec0ff12cb6e3baabd898453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ANALYTICAL SOLUTION</topic><topic>APPROXIMATIONS</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BALMER LINES</topic><topic>CHROMOSPHERE</topic><topic>COLLISIONS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computational fluid dynamics</topic><topic>Dispersion</topic><topic>DISPERSIONS</topic><topic>Dynamic stability</topic><topic>Energy equation</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>H alpha line</topic><topic>HELMHOLTZ INSTABILITY</topic><topic>Image resolution</topic><topic>Instability</topic><topic>Jets</topic><topic>Kelvin-Helmholtz instability</topic><topic>LIFETIME</topic><topic>Line spectra</topic><topic>LINE WIDTHS</topic><topic>MAGNETIC FLUX</topic><topic>Magnetohydrodynamic turbulence</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>magnetohydrodynamics (MHD)</topic><topic>methods: analytical</topic><topic>PLASMA</topic><topic>RED SHIFT</topic><topic>RESOLUTION</topic><topic>SPECTROSCOPY</topic><topic>SUN</topic><topic>Sun: atmosphere</topic><topic>Sun: chromosphere</topic><topic>Sun: transition region</topic><topic>techniques: imaging spectroscopy</topic><topic>TELESCOPES</topic><topic>Tubes</topic><topic>TURBULENT FLOW</topic><topic>VELOCITY</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuridze, D.</creatorcontrib><creatorcontrib>Zaqarashvili, T. V.</creatorcontrib><creatorcontrib>Henriques, V.</creatorcontrib><creatorcontrib>Mathioudakis, M.</creatorcontrib><creatorcontrib>Keenan, F. P.</creatorcontrib><creatorcontrib>Hanslmeier, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuridze, D.</au><au>Zaqarashvili, T. V.</au><au>Henriques, V.</au><au>Mathioudakis, M.</au><au>Keenan, F. P.</au><au>Hanslmeier, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KELVIN-HELMHOLTZ INSTABILITY IN SOLAR CHROMOSPHERIC JETS: THEORY AND OBSERVATION</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2016-10-20</date><risdate>2016</risdate><volume>830</volume><issue>2</issue><spage>133</spage><pages>133-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>ABSTRACT Using data obtained by the high-resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1 m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at the disk center. Small-scale features, such as rapid redshifted and blueshifted excursions, appearing as high-speed jets in the wings of the H line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin-Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated with the KHI could be observed as a broadening of chromospheric spectral lines. Analysis of the H line profiles shows that the detected structures have enhanced line widths with respect to the background. We also investigate the stability of a larger-scale H jet that was ejected along the line of sight. Vortex-like features, rapidly developing around the jet's boundary, are considered as evidence of the KHI. The analysis of the energy equation in the partially ionized plasma shows that ion-neutral collisions may lead to fast heating of the KH vortices over timescales comparable to the lifetime of chromospheric jets.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/0004-637X/830/2/133</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2760-2311</orcidid><orcidid>https://orcid.org/0000-0001-5015-5762</orcidid><orcidid>https://orcid.org/0000-0002-4024-7732</orcidid><orcidid>https://orcid.org/0000-0001-5435-1170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2016-10, Vol.830 (2), p.133
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22667307
source IOP Publishing Free Content
subjects ANALYTICAL SOLUTION
APPROXIMATIONS
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BALMER LINES
CHROMOSPHERE
COLLISIONS
COMPARATIVE EVALUATIONS
Computational fluid dynamics
Dispersion
DISPERSIONS
Dynamic stability
Energy equation
Exact solutions
Fluid flow
H alpha line
HELMHOLTZ INSTABILITY
Image resolution
Instability
Jets
Kelvin-Helmholtz instability
LIFETIME
Line spectra
LINE WIDTHS
MAGNETIC FLUX
Magnetohydrodynamic turbulence
MAGNETOHYDRODYNAMICS
magnetohydrodynamics (MHD)
methods: analytical
PLASMA
RED SHIFT
RESOLUTION
SPECTROSCOPY
SUN
Sun: atmosphere
Sun: chromosphere
Sun: transition region
techniques: imaging spectroscopy
TELESCOPES
Tubes
TURBULENT FLOW
VELOCITY
Vortices
title KELVIN-HELMHOLTZ INSTABILITY IN SOLAR CHROMOSPHERIC JETS: THEORY AND OBSERVATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KELVIN-HELMHOLTZ%20INSTABILITY%20IN%20SOLAR%20CHROMOSPHERIC%20JETS:%20THEORY%20AND%20OBSERVATION&rft.jtitle=The%20Astrophysical%20journal&rft.au=Kuridze,%20D.&rft.date=2016-10-20&rft.volume=830&rft.issue=2&rft.spage=133&rft.pages=133-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/0004-637X/830/2/133&rft_dat=%3Cproquest_O3W%3E2365846975%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365846975&rft_id=info:pmid/&rfr_iscdi=true