BABCOCK-LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY
ABSTRACT The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dyna...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2016-11, Vol.832 (1), p.94 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 94 |
container_title | The Astrophysical journal |
container_volume | 832 |
creator | Karak, Bidya Binay Cameron, Robert |
description | ABSTRACT The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used. |
doi_str_mv | 10.3847/0004-637X/832/1/94 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22667165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365781546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f9264b666ed97f6051f6e62386b9de4aeb5eaaa2d195d6dae12dd9eff809bb83</originalsourceid><addsrcrecordid>eNp9kMtOg0AUhidGE-vlBVyR6JaWucK4G4G2RMpUxEtXEy6DttGCgAvfXmpNuzGuTk7O9_05-QG4gNYQO8QeWZZFTIbt55GD0QiOODkAA0ixYxJM7UMw2AHH4KRtV5sVcT4ALzfixpXurRn6wWSayMi4l6GIDW8RiZm8NpKpb8Qy9A05Njz5FD2J2DPmD7N5EE0MEXk_gH_3IBIZb2-xnIuJSII-qneEmwSPQbI4A0dl-tbq8995CpKxn7hTM5STwBWhmRNIO7PkiJGMMaYLbpfMorBkmiHssIwXmqQ6ozpNU1RATgtWpBqiouC6LB2LZ5mDT8HlNrZqu6Vq82Wn89e8Wq913imEGLMho3uqbqqPT912alV9Nuv-L4Uwo7YDKWE9hbZU3lRt2-hS1c3yPW2-FLTUpnW1aVFtSlV96woqTnppuJWWVb1P_Ve4-kNI69UOUXVR4m-geYah</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365781546</pqid></control><display><type>article</type><title>BABCOCK-LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY</title><source>IOP Publishing Free Content</source><creator>Karak, Bidya Binay ; Cameron, Robert</creator><creatorcontrib>Karak, Bidya Binay ; Cameron, Robert</creatorcontrib><description>ABSTRACT The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/0004-637X/832/1/94</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; CONVECTION ; DECAY ; Differential rotation ; DIFFUSION ; Diffusion pumps ; Dispersal ; dynamo ; Dynamo theory ; LAYERS ; MAGNETIC FIELDS ; Magnetic pumping ; MAGNETOHYDRODYNAMICS ; magnetohydrodynamics (MHD) ; Meridional flow ; MIGRATION ; Periodic variations ; PERIODICITY ; PUMPING ; Rotating generators ; ROTATION ; Shear layers ; SOLAR CYCLE ; SUN ; Sun: activity ; Sun: interior ; Sun: magnetic fields ; Sun: rotation ; SURFACES ; Transport</subject><ispartof>The Astrophysical journal, 2016-11, Vol.832 (1), p.94</ispartof><rights>2016. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 20, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f9264b666ed97f6051f6e62386b9de4aeb5eaaa2d195d6dae12dd9eff809bb83</citedby><cites>FETCH-LOGICAL-c415t-f9264b666ed97f6051f6e62386b9de4aeb5eaaa2d195d6dae12dd9eff809bb83</cites><orcidid>0000-0002-8883-3562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/0004-637X/832/1/94/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27922,27923,38888,53865</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/0004-637X/832/1/94$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22667165$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Karak, Bidya Binay</creatorcontrib><creatorcontrib>Cameron, Robert</creatorcontrib><title>BABCOCK-LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>ABSTRACT The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.</description><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>CONVECTION</subject><subject>DECAY</subject><subject>Differential rotation</subject><subject>DIFFUSION</subject><subject>Diffusion pumps</subject><subject>Dispersal</subject><subject>dynamo</subject><subject>Dynamo theory</subject><subject>LAYERS</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic pumping</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>magnetohydrodynamics (MHD)</subject><subject>Meridional flow</subject><subject>MIGRATION</subject><subject>Periodic variations</subject><subject>PERIODICITY</subject><subject>PUMPING</subject><subject>Rotating generators</subject><subject>ROTATION</subject><subject>Shear layers</subject><subject>SOLAR CYCLE</subject><subject>SUN</subject><subject>Sun: activity</subject><subject>Sun: interior</subject><subject>Sun: magnetic fields</subject><subject>Sun: rotation</subject><subject>SURFACES</subject><subject>Transport</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOg0AUhidGE-vlBVyR6JaWucK4G4G2RMpUxEtXEy6DttGCgAvfXmpNuzGuTk7O9_05-QG4gNYQO8QeWZZFTIbt55GD0QiOODkAA0ixYxJM7UMw2AHH4KRtV5sVcT4ALzfixpXurRn6wWSayMi4l6GIDW8RiZm8NpKpb8Qy9A05Njz5FD2J2DPmD7N5EE0MEXk_gH_3IBIZb2-xnIuJSII-qneEmwSPQbI4A0dl-tbq8995CpKxn7hTM5STwBWhmRNIO7PkiJGMMaYLbpfMorBkmiHssIwXmqQ6ozpNU1RATgtWpBqiouC6LB2LZ5mDT8HlNrZqu6Vq82Wn89e8Wq913imEGLMho3uqbqqPT912alV9Nuv-L4Uwo7YDKWE9hbZU3lRt2-hS1c3yPW2-FLTUpnW1aVFtSlV96woqTnppuJWWVb1P_Ve4-kNI69UOUXVR4m-geYah</recordid><startdate>20161120</startdate><enddate>20161120</enddate><creator>Karak, Bidya Binay</creator><creator>Cameron, Robert</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8883-3562</orcidid></search><sort><creationdate>20161120</creationdate><title>BABCOCK-LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY</title><author>Karak, Bidya Binay ; Cameron, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f9264b666ed97f6051f6e62386b9de4aeb5eaaa2d195d6dae12dd9eff809bb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>CONVECTION</topic><topic>DECAY</topic><topic>Differential rotation</topic><topic>DIFFUSION</topic><topic>Diffusion pumps</topic><topic>Dispersal</topic><topic>dynamo</topic><topic>Dynamo theory</topic><topic>LAYERS</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic pumping</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>magnetohydrodynamics (MHD)</topic><topic>Meridional flow</topic><topic>MIGRATION</topic><topic>Periodic variations</topic><topic>PERIODICITY</topic><topic>PUMPING</topic><topic>Rotating generators</topic><topic>ROTATION</topic><topic>Shear layers</topic><topic>SOLAR CYCLE</topic><topic>SUN</topic><topic>Sun: activity</topic><topic>Sun: interior</topic><topic>Sun: magnetic fields</topic><topic>Sun: rotation</topic><topic>SURFACES</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karak, Bidya Binay</creatorcontrib><creatorcontrib>Cameron, Robert</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karak, Bidya Binay</au><au>Cameron, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BABCOCK-LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2016-11-20</date><risdate>2016</risdate><volume>832</volume><issue>1</issue><spage>94</spage><pages>94-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>ABSTRACT The key elements of the Babcock-Leighton dynamos are the generation of poloidal field through decay and the dispersal of tilted bipolar active regions and the generation of toroidal field through the observed differential rotation. These models are traditionally known as flux transport dynamo models as the equatorward propagations of the butterfly wings in these models are produced due to an equatorward flow at the bottom of the convection zone. Here we investigate the role of downward magnetic pumping near the surface using a kinematic Babcock-Leighton model. We find that the pumping causes the poloidal field to become predominately radial in the near-surface shear layer, which allows the negative radial shear to effectively act on the radial field to produce a toroidal field. We observe a clear equatorward migration of the toroidal field at low latitudes as a consequence of the dynamo wave even when there is no meridional flow in the deep convection zone. Both the dynamo wave and the flux transport type solutions are thus able to reproduce some of the observed features of the solar cycle including the 11-year periodicity. The main difference between the two types of solutions is the strength of the Babcock-Leighton source required to produce the dynamo action. A second consequence of the magnetic pumping is that it suppresses the diffusion of fields through the surface, which helps to allow an 11-year cycle at (moderately) larger values of magnetic diffusivity than have previously been used.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/0004-637X/832/1/94</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8883-3562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2016-11, Vol.832 (1), p.94 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22667165 |
source | IOP Publishing Free Content |
subjects | Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY CONVECTION DECAY Differential rotation DIFFUSION Diffusion pumps Dispersal dynamo Dynamo theory LAYERS MAGNETIC FIELDS Magnetic pumping MAGNETOHYDRODYNAMICS magnetohydrodynamics (MHD) Meridional flow MIGRATION Periodic variations PERIODICITY PUMPING Rotating generators ROTATION Shear layers SOLAR CYCLE SUN Sun: activity Sun: interior Sun: magnetic fields Sun: rotation SURFACES Transport |
title | BABCOCK-LEIGHTON SOLAR DYNAMO: THE ROLE OF DOWNWARD PUMPING AND THE EQUATORWARD PROPAGATION OF ACTIVITY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BABCOCK-LEIGHTON%20SOLAR%20DYNAMO:%20THE%20ROLE%20OF%20DOWNWARD%20PUMPING%20AND%20THE%20EQUATORWARD%20PROPAGATION%20OF%20ACTIVITY&rft.jtitle=The%20Astrophysical%20journal&rft.au=Karak,%20Bidya%20Binay&rft.date=2016-11-20&rft.volume=832&rft.issue=1&rft.spage=94&rft.pages=94-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/0004-637X/832/1/94&rft_dat=%3Cproquest_O3W%3E2365781546%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365781546&rft_id=info:pmid/&rfr_iscdi=true |