Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745
SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We u...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-01, Vol.835 (1), p.5 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found T(sub AB) = 47.7 +/- 6.0 days and T(sub AC) = 722 +/- 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are T(sub AD) = 502+/- 68 days, T( sub AE) = 611 +/- 75 days, and T(sub AF) = 415 +/- 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/835/1/5 |