GALACTIC CHEMICAL EVOLUTION: THE IMPACT OF THE {sup 13}C-POCKET STRUCTURE ON THE s -PROCESS DISTRIBUTION
The solar s -process abundances have been analyzed in the framework of a Galactic Chemical Evolution (GCE) model. The aim of this work is to implement the study by Bisterzo et al., who investigated the effect of one of the major uncertainties of asymptotic giant branch (AGB) yields, the internal str...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-01, Vol.835 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The solar s -process abundances have been analyzed in the framework of a Galactic Chemical Evolution (GCE) model. The aim of this work is to implement the study by Bisterzo et al., who investigated the effect of one of the major uncertainties of asymptotic giant branch (AGB) yields, the internal structure of the {sup 13}C pocket. We present GCE predictions of s -process elements computed with additional tests in the light of suggestions provided in recent publications. The analysis is extended to different metallicities, by comparing GCE results and updated spectroscopic observations of unevolved field stars. We verify that the GCE predictions obtained with different tests may represent, on average, the evolution of selected neutron-capture elements in the Galaxy. The impact of an additional weak s -process contribution from fast-rotating massive stars is also explored. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/835/1/97 |