On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind
Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damp...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2017-05, Vol.840 (2), p.106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 106 |
container_title | The Astrophysical journal |
container_volume | 840 |
creator | Verscharen, Daniel Chen, Christopher H. K. Wicks, Robert T. |
description | Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β. MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected. |
doi_str_mv | 10.3847/1538-4357/aa6a56 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22663613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365914597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2d7da10ebf4420590917ee689fb2a5e3f8c4c3ca7ff13df75ebb505642c4831a3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jwGvq8vvtkcZTsXJhCkKHkKapiyjJjNJEf97WyYOD54-vpfn_fh4ADjH6JIWLJ9iTouMUZ5PlRKKiwMw-o0OwQghxDJB89djcBLjZlhJWY7A29LBe-tMshquWv8JH3xt4gTO287WfxLlavgYTIxdMFmlWuW06YkUOp36KELrYFobuPKtCvDFuvoUHDWqjebsZ47B8_z6aXabLZY3d7OrRaYZIikjdV4rjEzVMEYQL1GJc2NEUTYVUdzQptBMU63ypsG0bnJuqoojLhjRrKBY0TG42N31MVkZtU1Gr7V3zugkCRGCCkz31Db4j87EJDe-C65_TBIqeIkZL_OeQjtKBx9jMI3cBvuuwpfESA6i5WBVDlblTnRfmewq1m_3N__FvwGKT31l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365914597</pqid></control><display><type>article</type><title>On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind</title><source>IOP Publishing Free Content</source><creator>Verscharen, Daniel ; Chen, Christopher H. K. ; Wicks, Robert T.</creator><creatorcontrib>Verscharen, Daniel ; Chen, Christopher H. K. ; Wicks, Robert T.</creatorcontrib><description>Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β. MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa6a56</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>AMPLITUDES ; ANISOTROPY ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COMPARATIVE EVALUATIONS ; Computational fluid dynamics ; DISPERSION RELATIONS ; DISPERSIONS ; FLUCTUATIONS ; Fluid flow ; FORECASTING ; HIGH-BETA PLASMA ; Kinetic theory ; LANDAU LIQUID HELIUM THEORY ; Magnetohydrodynamic turbulence ; MAGNETOHYDRODYNAMICS ; Mathematical analysis ; Phase velocity ; Plasma ; plasmas ; POLARIZATION ; SIMULATION ; SOLAR WIND ; TURBULENCE ; Variation ; VELOCITY ; Wave dispersion ; waves</subject><ispartof>The Astrophysical journal, 2017-05, Vol.840 (2), p.106</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2d7da10ebf4420590917ee689fb2a5e3f8c4c3ca7ff13df75ebb505642c4831a3</citedby><cites>FETCH-LOGICAL-c402t-2d7da10ebf4420590917ee689fb2a5e3f8c4c3ca7ff13df75ebb505642c4831a3</cites><orcidid>0000-0003-4529-3620 ; 0000-0002-0622-5302 ; 0000-0002-0497-1096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa6a56/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,38871,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa6a56$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22663613$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Chen, Christopher H. K.</creatorcontrib><creatorcontrib>Wicks, Robert T.</creatorcontrib><title>On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β. MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.</description><subject>AMPLITUDES</subject><subject>ANISOTROPY</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computational fluid dynamics</subject><subject>DISPERSION RELATIONS</subject><subject>DISPERSIONS</subject><subject>FLUCTUATIONS</subject><subject>Fluid flow</subject><subject>FORECASTING</subject><subject>HIGH-BETA PLASMA</subject><subject>Kinetic theory</subject><subject>LANDAU LIQUID HELIUM THEORY</subject><subject>Magnetohydrodynamic turbulence</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>Mathematical analysis</subject><subject>Phase velocity</subject><subject>Plasma</subject><subject>plasmas</subject><subject>POLARIZATION</subject><subject>SIMULATION</subject><subject>SOLAR WIND</subject><subject>TURBULENCE</subject><subject>Variation</subject><subject>VELOCITY</subject><subject>Wave dispersion</subject><subject>waves</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd3jwGvq8vvtkcZTsXJhCkKHkKapiyjJjNJEf97WyYOD54-vpfn_fh4ADjH6JIWLJ9iTouMUZ5PlRKKiwMw-o0OwQghxDJB89djcBLjZlhJWY7A29LBe-tMshquWv8JH3xt4gTO287WfxLlavgYTIxdMFmlWuW06YkUOp36KELrYFobuPKtCvDFuvoUHDWqjebsZ47B8_z6aXabLZY3d7OrRaYZIikjdV4rjEzVMEYQL1GJc2NEUTYVUdzQptBMU63ypsG0bnJuqoojLhjRrKBY0TG42N31MVkZtU1Gr7V3zugkCRGCCkz31Db4j87EJDe-C65_TBIqeIkZL_OeQjtKBx9jMI3cBvuuwpfESA6i5WBVDlblTnRfmewq1m_3N__FvwGKT31l</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Verscharen, Daniel</creator><creator>Chen, Christopher H. K.</creator><creator>Wicks, Robert T.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4529-3620</orcidid><orcidid>https://orcid.org/0000-0002-0622-5302</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid></search><sort><creationdate>20170510</creationdate><title>On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind</title><author>Verscharen, Daniel ; Chen, Christopher H. K. ; Wicks, Robert T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2d7da10ebf4420590917ee689fb2a5e3f8c4c3ca7ff13df75ebb505642c4831a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>AMPLITUDES</topic><topic>ANISOTROPY</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computational fluid dynamics</topic><topic>DISPERSION RELATIONS</topic><topic>DISPERSIONS</topic><topic>FLUCTUATIONS</topic><topic>Fluid flow</topic><topic>FORECASTING</topic><topic>HIGH-BETA PLASMA</topic><topic>Kinetic theory</topic><topic>LANDAU LIQUID HELIUM THEORY</topic><topic>Magnetohydrodynamic turbulence</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>Mathematical analysis</topic><topic>Phase velocity</topic><topic>Plasma</topic><topic>plasmas</topic><topic>POLARIZATION</topic><topic>SIMULATION</topic><topic>SOLAR WIND</topic><topic>TURBULENCE</topic><topic>Variation</topic><topic>VELOCITY</topic><topic>Wave dispersion</topic><topic>waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Chen, Christopher H. K.</creatorcontrib><creatorcontrib>Wicks, Robert T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verscharen, Daniel</au><au>Chen, Christopher H. K.</au><au>Wicks, Robert T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>840</volume><issue>2</issue><spage>106</spage><pages>106-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β. MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa6a56</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4529-3620</orcidid><orcidid>https://orcid.org/0000-0002-0622-5302</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2017-05, Vol.840 (2), p.106 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22663613 |
source | IOP Publishing Free Content |
subjects | AMPLITUDES ANISOTROPY Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY COMPARATIVE EVALUATIONS Computational fluid dynamics DISPERSION RELATIONS DISPERSIONS FLUCTUATIONS Fluid flow FORECASTING HIGH-BETA PLASMA Kinetic theory LANDAU LIQUID HELIUM THEORY Magnetohydrodynamic turbulence MAGNETOHYDRODYNAMICS Mathematical analysis Phase velocity Plasma plasmas POLARIZATION SIMULATION SOLAR WIND TURBULENCE Variation VELOCITY Wave dispersion waves |
title | On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Kinetic%20Slow%20Modes,%20Fluid%20Slow%20Modes,%20and%20Pressure-balanced%20Structures%20in%20the%20Solar%20Wind&rft.jtitle=The%20Astrophysical%20journal&rft.au=Verscharen,%20Daniel&rft.date=2017-05-10&rft.volume=840&rft.issue=2&rft.spage=106&rft.pages=106-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa6a56&rft_dat=%3Cproquest_O3W%3E2365914597%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365914597&rft_id=info:pmid/&rfr_iscdi=true |