On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-05, Vol.840 (2), p.106
Hauptverfasser: Verscharen, Daniel, Chen, Christopher H. K., Wicks, Robert T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 106
container_title The Astrophysical journal
container_volume 840
creator Verscharen, Daniel
Chen, Christopher H. K.
Wicks, Robert T.
description Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β. MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.
doi_str_mv 10.3847/1538-4357/aa6a56
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_22663613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365914597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2d7da10ebf4420590917ee689fb2a5e3f8c4c3ca7ff13df75ebb505642c4831a3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jwGvq8vvtkcZTsXJhCkKHkKapiyjJjNJEf97WyYOD54-vpfn_fh4ADjH6JIWLJ9iTouMUZ5PlRKKiwMw-o0OwQghxDJB89djcBLjZlhJWY7A29LBe-tMshquWv8JH3xt4gTO287WfxLlavgYTIxdMFmlWuW06YkUOp36KELrYFobuPKtCvDFuvoUHDWqjebsZ47B8_z6aXabLZY3d7OrRaYZIikjdV4rjEzVMEYQL1GJc2NEUTYVUdzQptBMU63ypsG0bnJuqoojLhjRrKBY0TG42N31MVkZtU1Gr7V3zugkCRGCCkz31Db4j87EJDe-C65_TBIqeIkZL_OeQjtKBx9jMI3cBvuuwpfESA6i5WBVDlblTnRfmewq1m_3N__FvwGKT31l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365914597</pqid></control><display><type>article</type><title>On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind</title><source>IOP Publishing Free Content</source><creator>Verscharen, Daniel ; Chen, Christopher H. K. ; Wicks, Robert T.</creator><creatorcontrib>Verscharen, Daniel ; Chen, Christopher H. K. ; Wicks, Robert T.</creatorcontrib><description>Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β. MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aa6a56</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>AMPLITUDES ; ANISOTROPY ; Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COMPARATIVE EVALUATIONS ; Computational fluid dynamics ; DISPERSION RELATIONS ; DISPERSIONS ; FLUCTUATIONS ; Fluid flow ; FORECASTING ; HIGH-BETA PLASMA ; Kinetic theory ; LANDAU LIQUID HELIUM THEORY ; Magnetohydrodynamic turbulence ; MAGNETOHYDRODYNAMICS ; Mathematical analysis ; Phase velocity ; Plasma ; plasmas ; POLARIZATION ; SIMULATION ; SOLAR WIND ; TURBULENCE ; Variation ; VELOCITY ; Wave dispersion ; waves</subject><ispartof>The Astrophysical journal, 2017-05, Vol.840 (2), p.106</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2d7da10ebf4420590917ee689fb2a5e3f8c4c3ca7ff13df75ebb505642c4831a3</citedby><cites>FETCH-LOGICAL-c402t-2d7da10ebf4420590917ee689fb2a5e3f8c4c3ca7ff13df75ebb505642c4831a3</cites><orcidid>0000-0003-4529-3620 ; 0000-0002-0622-5302 ; 0000-0002-0497-1096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa6a56/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,38871,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aa6a56$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22663613$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Chen, Christopher H. K.</creatorcontrib><creatorcontrib>Wicks, Robert T.</creatorcontrib><title>On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β. MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.</description><subject>AMPLITUDES</subject><subject>ANISOTROPY</subject><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>Computational fluid dynamics</subject><subject>DISPERSION RELATIONS</subject><subject>DISPERSIONS</subject><subject>FLUCTUATIONS</subject><subject>Fluid flow</subject><subject>FORECASTING</subject><subject>HIGH-BETA PLASMA</subject><subject>Kinetic theory</subject><subject>LANDAU LIQUID HELIUM THEORY</subject><subject>Magnetohydrodynamic turbulence</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>Mathematical analysis</subject><subject>Phase velocity</subject><subject>Plasma</subject><subject>plasmas</subject><subject>POLARIZATION</subject><subject>SIMULATION</subject><subject>SOLAR WIND</subject><subject>TURBULENCE</subject><subject>Variation</subject><subject>VELOCITY</subject><subject>Wave dispersion</subject><subject>waves</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd3jwGvq8vvtkcZTsXJhCkKHkKapiyjJjNJEf97WyYOD54-vpfn_fh4ADjH6JIWLJ9iTouMUZ5PlRKKiwMw-o0OwQghxDJB89djcBLjZlhJWY7A29LBe-tMshquWv8JH3xt4gTO287WfxLlavgYTIxdMFmlWuW06YkUOp36KELrYFobuPKtCvDFuvoUHDWqjebsZ47B8_z6aXabLZY3d7OrRaYZIikjdV4rjEzVMEYQL1GJc2NEUTYVUdzQptBMU63ypsG0bnJuqoojLhjRrKBY0TG42N31MVkZtU1Gr7V3zugkCRGCCkz31Db4j87EJDe-C65_TBIqeIkZL_OeQjtKBx9jMI3cBvuuwpfESA6i5WBVDlblTnRfmewq1m_3N__FvwGKT31l</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Verscharen, Daniel</creator><creator>Chen, Christopher H. K.</creator><creator>Wicks, Robert T.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4529-3620</orcidid><orcidid>https://orcid.org/0000-0002-0622-5302</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid></search><sort><creationdate>20170510</creationdate><title>On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind</title><author>Verscharen, Daniel ; Chen, Christopher H. K. ; Wicks, Robert T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2d7da10ebf4420590917ee689fb2a5e3f8c4c3ca7ff13df75ebb505642c4831a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>AMPLITUDES</topic><topic>ANISOTROPY</topic><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>Computational fluid dynamics</topic><topic>DISPERSION RELATIONS</topic><topic>DISPERSIONS</topic><topic>FLUCTUATIONS</topic><topic>Fluid flow</topic><topic>FORECASTING</topic><topic>HIGH-BETA PLASMA</topic><topic>Kinetic theory</topic><topic>LANDAU LIQUID HELIUM THEORY</topic><topic>Magnetohydrodynamic turbulence</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>Mathematical analysis</topic><topic>Phase velocity</topic><topic>Plasma</topic><topic>plasmas</topic><topic>POLARIZATION</topic><topic>SIMULATION</topic><topic>SOLAR WIND</topic><topic>TURBULENCE</topic><topic>Variation</topic><topic>VELOCITY</topic><topic>Wave dispersion</topic><topic>waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verscharen, Daniel</creatorcontrib><creatorcontrib>Chen, Christopher H. K.</creatorcontrib><creatorcontrib>Wicks, Robert T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verscharen, Daniel</au><au>Chen, Christopher H. K.</au><au>Wicks, Robert T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>840</volume><issue>2</issue><spage>106</spage><pages>106-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β. MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aa6a56</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4529-3620</orcidid><orcidid>https://orcid.org/0000-0002-0622-5302</orcidid><orcidid>https://orcid.org/0000-0002-0497-1096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2017-05, Vol.840 (2), p.106
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22663613
source IOP Publishing Free Content
subjects AMPLITUDES
ANISOTROPY
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COMPARATIVE EVALUATIONS
Computational fluid dynamics
DISPERSION RELATIONS
DISPERSIONS
FLUCTUATIONS
Fluid flow
FORECASTING
HIGH-BETA PLASMA
Kinetic theory
LANDAU LIQUID HELIUM THEORY
Magnetohydrodynamic turbulence
MAGNETOHYDRODYNAMICS
Mathematical analysis
Phase velocity
Plasma
plasmas
POLARIZATION
SIMULATION
SOLAR WIND
TURBULENCE
Variation
VELOCITY
Wave dispersion
waves
title On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Kinetic%20Slow%20Modes,%20Fluid%20Slow%20Modes,%20and%20Pressure-balanced%20Structures%20in%20the%20Solar%20Wind&rft.jtitle=The%20Astrophysical%20journal&rft.au=Verscharen,%20Daniel&rft.date=2017-05-10&rft.volume=840&rft.issue=2&rft.spage=106&rft.pages=106-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aa6a56&rft_dat=%3Cproquest_O3W%3E2365914597%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365914597&rft_id=info:pmid/&rfr_iscdi=true